These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30653272)

  • 1. Understanding the Giant Gap between Single-Pore- and Membrane-Based Nanofluidic Osmotic Power Generators.
    Gao J; Liu X; Jiang Y; Ding L; Jiang L; Guo W
    Small; 2019 Mar; 15(11):e1804279. PubMed ID: 30653272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting.
    Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanopore Functionalized by Highly Charged Hydrogels for Osmotic Energy Harvesting.
    Ma T; Balanzat E; Janot JM; Balme S
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12578-12585. PubMed ID: 30860813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic Two-Dimensional MoS
    Zhu C; Liu P; Niu B; Liu Y; Xin W; Chen W; Kong XY; Zhang Z; Jiang L; Wen L
    J Am Chem Soc; 2021 Feb; 143(4):1932-1940. PubMed ID: 33455164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.
    Yeh LH; Chen F; Chiou YT; Su YS
    Small; 2017 Dec; 13(48):. PubMed ID: 29063668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopore-Based Power Generation from Salinity Gradient: Why It Is Not Viable.
    Wang L; Wang Z; Patel SK; Lin S; Elimelech M
    ACS Nano; 2021 Mar; 15(3):4093-4107. PubMed ID: 33497186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation promoted osmotic energy conversion in black phosphorus membranes.
    Zhang Z; Zhang P; Yang S; Zhang T; Löffler M; Shi H; Lohe MR; Feng X
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13959-13966. PubMed ID: 32513735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X; Liu S; Crittenden J; Chen Y
    ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membranes for Osmotic Power Generation by Reverse Electrodialysis.
    Rahman MM
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Membranes for Osmotic Power Generation.
    Chu CW; Fauziah AR; Yeh LH
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303582. PubMed ID: 37010943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel.
    Hsu JP; Su TC; Peng PH; Hsu SC; Zheng MJ; Yeh LH
    ACS Nano; 2019 Nov; 13(11):13374-13381. PubMed ID: 31639293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system.
    Zhu X; Hao J; Bao B; Zhou Y; Zhang H; Pang J; Jiang Z; Jiang L
    Sci Adv; 2018 Oct; 4(10):eaau1665. PubMed ID: 30397649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced osmotic transport in individual double-walled carbon nanotube.
    Cui G; Xu Z; Li H; Zhang S; Xu L; Siria A; Ma M
    Nat Commun; 2023 Apr; 14(1):2295. PubMed ID: 37085535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
    Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z
    J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing osmotic power generation by covalent organic framework monolayer.
    Yang J; Tu B; Zhang G; Liu P; Hu K; Wang J; Yan Z; Huang Z; Fang M; Hou J; Fang Q; Qiu X; Li L; Tang Z
    Nat Nanotechnol; 2022 Jun; 17(6):622-628. PubMed ID: 35469012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Scalable Nanofluidic Osmotic Power Generation from Hypersaline Water Sources with a Metal-Organic Framework Membrane.
    Pan S; Liu P; Li Q; Zhu B; Liu X; Lao J; Gao J; Jiang L
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202218129. PubMed ID: 36880813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.