These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30653285)

  • 1. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-Fiber-Based Supercapacitors Favor N-Methyl-2-pyrrolidone/Ethyl Acetate as the Spinning Solvent/Coagulant Combination.
    He N; Pan Q; Liu Y; Gao W
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24568-24576. PubMed ID: 28661648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.
    Ma Y; Li P; Sedloff I; Zhang X; Zhang H; Liu J
    ACS Nano; 2015 Feb; 9(2):1352-9. PubMed ID: 25625807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance.
    Wu Y; Meng Z; Yang J; Xue Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Energy Density of Coaxial Fiber Asymmetric Supercapacitor Based on MoS
    He H; Yang X; Wang L; Zhang X; Li X; Lü W
    Chemistry; 2020 Dec; 26(71):17212-17221. PubMed ID: 32954578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Electrochemical Capacity MnO
    Tian X; Cheng X; Liao S; Chen J; Lv P; Wei Q
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37908058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors.
    Sheng L; Wei T; Liang Y; Jiang L; Qu L; Fan Z
    Small; 2017 Jun; 13(22):. PubMed ID: 28417542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors.
    Yu C; An J; Zhou R; Xu H; Zhou J; Chen Q; Sun G; Huang W
    Small; 2020 Jun; 16(25):e2000653. PubMed ID: 32432831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Conductive Ti
    Zhang J; Seyedin S; Qin S; Wang Z; Moradi S; Yang F; Lynch PA; Yang W; Liu J; Wang X; Razal JM
    Small; 2019 Feb; 15(8):e1804732. PubMed ID: 30653274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Fiber-Based Wearable Supercapacitors: Recent Advances in Design, Construction, and Application.
    Cheng H; Li Q; Zhu L; Chen S
    Small Methods; 2021 Sep; 5(9):e2100502. PubMed ID: 34928057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance hybrid carbon nanotube fibers for wearable energy storage.
    Lu Z; Chao Y; Ge Y; Foroughi J; Zhao Y; Wang C; Long H; Wallace GG
    Nanoscale; 2017 Apr; 9(16):5063-5071. PubMed ID: 28265639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of P-Doped and NiCo-Hybridized Graphene-Based Fibers for Flexible Asymmetrical Solid-State Micro-Energy Storage Device.
    Zhou C; Gao T; Wang Y; Liu Q; Huang Z; Liu X; Qing M; Xiao D
    Small; 2019 Jan; 15(1):e1803469. PubMed ID: 30480359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.
    Cai W; Lai T; Lai J; Xie H; Ouyang L; Ye J; Yu C
    Sci Rep; 2016 Jun; 6():26890. PubMed ID: 27248510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Porous Carbon Nanotubes/Reduced Graphene Oxide Fiber from Rapid Phase Separation for a High-Rate All-Solid-State Supercapacitor.
    Ma W; Li M; Zhou X; Li J; Dong Y; Zhu M
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9283-9290. PubMed ID: 30762337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials.
    Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors.
    Yang B; Hao C; Wen F; Wang B; Mu C; Xiang J; Li L; Xu B; Zhao Z; Liu Z; Tian Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44478-44484. PubMed ID: 29192760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor.
    Li Y; Kang Z; Yan X; Cao S; Li M; Guo Y; Huan Y; Wen X; Zhang Y
    Nanoscale; 2018 May; 10(19):9360-9368. PubMed ID: 29737983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.