These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Intrusion and extrusion of water in hydrophobic nanopores. Tinti A; Giacomello A; Grosu Y; Casciola CM Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10266-E10273. PubMed ID: 29138311 [TBL] [Abstract][Full Text] [Related]
3. Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion-Extrusion into-from Hydrophobic Nanopores. Zajdel P; Madden DG; Babu R; Tortora M; Mirani D; Tsyrin NN; Bartolomé L; Amayuelas E; Fairen-Jimenez D; Lowe AR; Chorążewski M; Leao JB; Brown CM; Bleuel M; Stoudenets V; Casciola CM; Echeverría M; Bonilla F; Grancini G; Meloni S; Grosu Y ACS Appl Mater Interfaces; 2022 Jun; 14(23):26699-713. PubMed ID: 35656844 [TBL] [Abstract][Full Text] [Related]
4. Effect of the Topology on Wetting and Drying of Hydrophobic Porous Materials. Bushuev YG; Grosu Y; Chorążewski MA; Meloni S ACS Appl Mater Interfaces; 2022 Jul; 14(26):30067-30079. PubMed ID: 35730678 [TBL] [Abstract][Full Text] [Related]
5. An atomistically informed multiscale approach to the intrusion and extrusion of water in hydrophobic nanopores. Paulo G; Gubbiotti A; Giacomello A J Chem Phys; 2023 May; 158(20):. PubMed ID: 37222298 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous Dipole Reorientation in Confined Water and Its Effect on Wetting/Dewetting of Hydrophobic Nanopores. Bushuev YG; Grosu Y; Chorążewski M ACS Appl Mater Interfaces; 2024 Feb; 16(6):7604-7616. PubMed ID: 38300737 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Hydrophilicity/Hydrophobicity in Mesoporous Silica by Combining Adsorption, Liquid Intrusion, and Solid-State NMR Spectroscopy. Collados CC; Huber C; Söllner J; Grass JP; Inayat A; Durdyyev R; Smith AS; Wisser D; Hartmann M; Thommes M Langmuir; 2024 Jun; 40(25):12853-12867. PubMed ID: 38861921 [TBL] [Abstract][Full Text] [Related]
8. Partial Water Intrusion and Extrusion in Hydrophobic Nanopores for Thermomechanical Energy Dissipation. Paulo G; Bartolomé L; Bondarchuk O; Meloni S; Grosu Y; Giacomello A J Phys Chem C Nanomater Interfaces; 2024 Jul; 128(29):12036-12045. PubMed ID: 39081555 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Nanoporous Materials. Thommes M; Schlumberger C Annu Rev Chem Biomol Eng; 2021 Jun; 12():137-162. PubMed ID: 33770464 [TBL] [Abstract][Full Text] [Related]
10. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Wang S; Javadpour F; Feng Q Sci Rep; 2016 Feb; 6():20160. PubMed ID: 26832445 [TBL] [Abstract][Full Text] [Related]
11. Subnanometer Topological Tuning of the Liquid Intrusion/Extrusion Characteristics of Hydrophobic Micropores. Bushuev YG; Grosu Y; Chora Żewski MA; Meloni S Nano Lett; 2022 Mar; 22(6):2164-2169. PubMed ID: 35258978 [TBL] [Abstract][Full Text] [Related]
12. Effect of electric field on liquid infiltration into hydrophobic nanopores. Xu B; Qiao Y; Zhou Q; Chen X Langmuir; 2011 May; 27(10):6349-57. PubMed ID: 21491865 [TBL] [Abstract][Full Text] [Related]
13. Dynamic aspects of mercury porosimetry: a lattice model study. Porcheron F; Monson PA Langmuir; 2005 Mar; 21(7):3179-86. PubMed ID: 15780002 [TBL] [Abstract][Full Text] [Related]
14. Effect of Flexibility and Nanotriboelectrification on the Dynamic Reversibility of Water Intrusion into Nanopores: Pressure-Transmitting Fluid with Frequency-Dependent Dissipation Capability. Lowe A; Tsyrin N; Chorążewski M; Zajdel P; Mierzwa M; Leão JB; Bleuel M; Feng T; Luo D; Li M; Li D; Stoudenets V; Pawlus S; Faik A; Grosu Y ACS Appl Mater Interfaces; 2019 Oct; 11(43):40842-40849. PubMed ID: 31577412 [TBL] [Abstract][Full Text] [Related]
15. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. Moro F; Böhni H J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394 [TBL] [Abstract][Full Text] [Related]
16. Vapor nucleation paths in lyophobic nanopores. Tinti A; Giacomello A; Casciola CM Eur Phys J E Soft Matter; 2018 Apr; 41(4):52. PubMed ID: 29675633 [TBL] [Abstract][Full Text] [Related]
17. Spontaneous outflow efficiency of confined liquid in hydrophobic nanopores. Gao Y; Li M; Zhang Y; Lu W; Xu B Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25246-25253. PubMed ID: 32989153 [TBL] [Abstract][Full Text] [Related]
18. Controlling the Mobility of Ionic Liquids in the Nanopores of MOFs by Adjusting the Pore Size: From Conduction Collapse by Mutual Pore Blocking to Unhindered Ion Transport. Zhang Z; Liu M; Li C; Wenzel W; Heinke L Small; 2022 Sep; 18(39):e2200602. PubMed ID: 36002338 [TBL] [Abstract][Full Text] [Related]
20. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. Coasne B; Pellenq RJ J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]