These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30653322)

  • 1. Assessment of Initial Guesses for Self-Consistent Field Calculations. Superposition of Atomic Potentials: Simple yet Efficient.
    Lehtola S
    J Chem Theory Comput; 2019 Mar; 15(3):1593-1604. PubMed ID: 30653322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion.
    Ballesteros F; Lao KU
    J Chem Theory Comput; 2022 Jan; 18(1):179-191. PubMed ID: 34881906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient implementation of the superposition of atomic potentials initial guess for electronic structure calculations in Gaussian basis sets.
    Lehtola S; Visscher L; Engel E
    J Chem Phys; 2020 Apr; 152(14):144105. PubMed ID: 32295364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divide-and-Conquer Hartree-Fock Calculations on Proteins.
    He X; Merz KM
    J Chem Theory Comput; 2010 Jan; 6(2):405-411. PubMed ID: 20401160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starting SCF calculations by superposition of atomic densities.
    Van Lenthe JH; Zwaans R; Van Dam HJ; Guest MF
    J Comput Chem; 2006 Jun; 27(8):926-32. PubMed ID: 16557519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces.
    Lei Y; Suo B; Liu W
    J Chem Theory Comput; 2021 Aug; 17(8):4846-4859. PubMed ID: 34314180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined first- and second-order optimization method for improving convergence of Hartree-Fock and Kohn-Sham calculations.
    Kreplin DA; Werner HJ
    J Chem Phys; 2022 Jun; 156(21):214111. PubMed ID: 35676156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the One-Particle Density Matrix with Machine Learning.
    Hazra S; Patil U; Sanvito S
    J Chem Theory Comput; 2024 Jun; 20(11):4569-4578. PubMed ID: 38818782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
    De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F
    J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals.
    Bao JJ; Truhlar DG
    J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local Hartree-Fock orbitals using a three-level optimization strategy for the energy.
    Høyvik IM; Jansik B; Kristensen K; Jørgensen P
    J Comput Chem; 2013 Jun; 34(15):1311-20. PubMed ID: 23456899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projected Coupled Cluster Amplitudes from a Different Basis Set As Initial Guess.
    Caricato M; Trucks GW; Frisch MJ
    J Chem Theory Comput; 2011 Apr; 7(4):909-14. PubMed ID: 26606341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of the Harris functional for extended basis sets at the Hartree-Fock and density functional levels.
    Cullen J
    J Comput Chem; 2004 Apr; 25(5):637-48. PubMed ID: 14978707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Grassmann interpolation method for spin-unrestricted open-shell systems.
    Tan JA; Lao KU
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space.
    Graf D; Beuerle M; Ochsenfeld C
    J Chem Theory Comput; 2019 Aug; 15(8):4468-4477. PubMed ID: 31368702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel, linear-scaling building-block and embedding method based on localized orbitals and orbital-specific basis sets.
    Seijo L; Barandiarán Z
    J Chem Phys; 2004 Oct; 121(14):6698-709. PubMed ID: 15473725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved DIIS method using a versatile residual matrix to accelerate SCF starting from a crude guess.
    Hu L; Sarwono YP; Ding Y; He F; Zhang RQ
    J Comput Chem; 2024 Jul; ():. PubMed ID: 38979915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.