BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 30653412)

  • 1. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue.
    Gautieri A; Passini FS; Silván U; Guizar-Sicairos M; Carimati G; Volpi P; Moretti M; Schoenhuber H; Redaelli A; Berli M; Snedeker JG
    Matrix Biol; 2017 May; 59():95-108. PubMed ID: 27616134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons.
    Svensson RB; Smith ST; Moyer PJ; Magnusson SP
    Acta Biomater; 2018 Apr; 70():270-280. PubMed ID: 29447959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale mechanical effects of native collagen cross-linking in tendon.
    Eekhoff JD; Fang F; Lake SP
    Connect Tissue Res; 2018 Sep; 59(5):410-422. PubMed ID: 29873266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced glycation end-products diminish tendon collagen fiber sliding.
    Li Y; Fessel G; Georgiadis M; Snedeker JG
    Matrix Biol; 2013 Apr; 32(3-4):169-77. PubMed ID: 23348249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Advanced Glycation Endproducts in Rat Tail Collagen and Correlation to Tendon Stiffening.
    Jost T; Zipprich A; Glomb MA
    J Agric Food Chem; 2018 Apr; 66(15):3957-3965. PubMed ID: 29620898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of curcumin on the advanced glycation and cross-linking of collagen in diabetic rats.
    Sajithlal GB; Chithra P; Chandrakasan G
    Biochem Pharmacol; 1998 Dec; 56(12):1607-14. PubMed ID: 9973181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced glycation end-products reduce collagen molecular sliding to affect collagen fibril damage mechanisms but not stiffness.
    Fessel G; Li Y; Diederich V; Guizar-Sicairos M; Schneider P; Sell DR; Monnier VM; Snedeker JG
    PLoS One; 2014; 9(11):e110948. PubMed ID: 25364829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Advanced Glycation End Product Formation in Rat Tail Tendons by Polydatin and p-Coumaric acid: an In Vitro Study.
    Selvakumar G; Venu D; Kuttalam I; Lonchin S
    Appl Biochem Biotechnol; 2022 Jan; 194(1):339-353. PubMed ID: 34855112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of nonenzymatic glycation on biomechanical properties of cortical bone.
    Vashishth D; Gibson GJ; Khoury JI; Schaffler MB; Kimura J; Fyhrie DP
    Bone; 2001 Feb; 28(2):195-201. PubMed ID: 11182378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2016 Jul; 60():356-366. PubMed ID: 26925699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase-mediated cross-linking.
    Hudson DM; Archer M; King KB; Eyre DR
    J Biol Chem; 2018 Oct; 293(40):15620-15627. PubMed ID: 30143533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in the physical properties, cross-linking, and glycation of collagen from mouse tail tendon.
    Stammers M; Ivanova IM; Niewczas IS; Segonds-Pichon A; Streeter M; Spiegel DA; Clark J
    J Biol Chem; 2020 Jul; 295(31):10562-10571. PubMed ID: 32381510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced glycation end products induce crosslinking of collagen in vitro.
    Sajithlal GB; Chithra P; Chandrakasan G
    Biochim Biophys Acta; 1998 Sep; 1407(3):215-24. PubMed ID: 9748585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage-like U937 cells recognize collagen fibrils with strain-induced discrete plasticity damage.
    Veres SP; Brennan-Pierce EP; Lee JM
    J Biomed Mater Res A; 2015 Jan; 103(1):397-408. PubMed ID: 24616426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of collagen cross-linking therapies to mediate tendon mechanical properties.
    Fessel G; Gerber C; Snedeker JG
    J Shoulder Elbow Surg; 2012 Feb; 21(2):209-17. PubMed ID: 22244064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.