These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30653421)

  • 1. Shortening-induced residual force depression in humans.
    Chen J; Hahn D; Power GA
    J Appl Physiol (1985); 2019 Apr; 126(4):1066-1073. PubMed ID: 30653421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifiability of the history dependence of force through chronic eccentric and concentric biased resistance training.
    Chen J; Power GA
    J Appl Physiol (1985); 2019 Mar; 126(3):647-657. PubMed ID: 30571280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eccentric exercise-induced muscle weakness amplifies the history dependence of force.
    Contento VS; Power GA
    Eur J Appl Physiol; 2023 Apr; 123(4):749-767. PubMed ID: 36447012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual force depression following muscle shortening is exaggerated by prior eccentric drop jump exercise.
    Dargeviciute G; Masiulis N; Kamandulis S; Skurvydas A; Westerblad H
    J Appl Physiol (1985); 2013 Oct; 115(8):1191-5. PubMed ID: 23928115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual force enhancement and force depression in human single muscle fibres.
    Pinnell RAM; Mashouri P; Mazara N; Weersink E; Brown SHM; Power GA
    J Biomech; 2019 Jun; 91():164-169. PubMed ID: 31155213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. History dependence of the electromyogram: Implications for isometric steady-state EMG parameters following a lengthening or shortening contraction.
    Jones AA; Power GA; Herzog W
    J Electromyogr Kinesiol; 2016 Apr; 27():30-8. PubMed ID: 26891078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force depression following muscle shortening in sub-maximal voluntary contractions of human adductor pollicis.
    Rousanoglou EN; Oskouei AE; Herzog W
    J Biomech; 2007; 40(1):1-8. PubMed ID: 16443230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifiability of residual force depression in single muscle fibers following uphill and downhill training in rats.
    Mashouri P; Chen J; Noonan AM; Brown SHM; Power GA
    Physiol Rep; 2021 Jan; 9(2):e14725. PubMed ID: 33502825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reduction in compliance or activation level reduces residual force depression in human tibialis anterior.
    Raiteri BJ; Hahn D
    Acta Physiol (Oxf); 2019 Mar; 225(3):e13198. PubMed ID: 30300958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    J Appl Physiol (1985); 2019 Apr; 126(4):1015-1031. PubMed ID: 30730812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo.
    Hahn D; Riedel TN
    J Biomech; 2018 Aug; 77():190-193. PubMed ID: 29935734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of isometric training at short and long muscle-tendon unit lengths on the history dependence of force.
    Hinks A; Davidson B; Akagi R; Power GA
    Scand J Med Sci Sports; 2021 Feb; 31(2):325-338. PubMed ID: 33038040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual force enhancement due to active muscle lengthening allows similar reductions in neuromuscular activation during position- and force-control tasks.
    Marion R; Power GA
    J Sport Health Sci; 2020 Dec; 9(6):670-676. PubMed ID: 32693172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy cost of isometric force production after active shortening in skinned muscle fibres.
    Joumaa V; Fitzowich A; Herzog W
    J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central contributions to torque depression: an antagonist perspective.
    Sypkes CT; Contento VS; Bent LR; McNeil CJ; Power GA
    Exp Brain Res; 2019 Feb; 237(2):443-452. PubMed ID: 30456694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The history-dependent features of muscle force production: A challenge to the cross-bridge theory and their functional implications.
    Hahn D; Han SW; Joumaa V
    J Biomech; 2023 May; 152():111579. PubMed ID: 37054597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of training-induced sarcomerogenesis on the history dependence of force.
    Chen J; Mashouri P; Fontyn S; Valvano M; Elliott-Mohamed S; Noonan AM; Brown SHM; Power GA
    J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32561632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shortening-induced torque depression in old men: implications for age-related power loss.
    Power GA; Makrakos DP; Stevens DE; Herzog W; Rice CL; Vandervoort AA
    Exp Gerontol; 2014 Sep; 57():75-80. PubMed ID: 24835195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of a Stretch-Shortening Cycle on Muscle Activation and Muscle Oxygen Consumption: A Study of History-Dependence.
    Caron KE; Burr JF; Power GA
    J Strength Cond Res; 2020 Nov; 34(11):3139-3148. PubMed ID: 33105364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. History dependence of the EMG-torque relationship.
    Paquin J; Power GA
    J Electromyogr Kinesiol; 2018 Aug; 41():109-115. PubMed ID: 29879692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.