BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30653574)

  • 1. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable.
    Leynaud-Kieffer LMC; Curran SC; Kim I; Magnuson JK; Gladden JM; Baker SE; Simmons BA
    PLoS One; 2019; 14(1):e0210243. PubMed ID: 30653574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era.
    Tong Z; Zheng X; Tong Y; Shi YC; Sun J
    Microb Cell Fact; 2019 Feb; 18(1):28. PubMed ID: 30717739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs.
    Yoshioka I; Kirimura K
    J Biosci Bioeng; 2021 Jun; 131(6):579-588. PubMed ID: 33612423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing a one-step marker-free CRISPR/Cas9 system for industrial Aspergillus niger using counter-selectable marker Ang-ace2.
    Liu J; Zhu J; Zhang Q; Lv R; Liu H
    Biotechnol Lett; 2023 Dec; 45(11-12):1477-1485. PubMed ID: 37805953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes.
    Dong H; Zheng J; Yu D; Wang B; Pan L
    J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 facilitates rapid generation of constitutive forms of transcription factors in Aspergillus niger through specific on-site genomic mutations resulting in increased saccharification of plant biomass.
    Kun RS; Meng J; Salazar-Cerezo S; Mäkelä MR; de Vries RP; Garrigues S
    Enzyme Microb Technol; 2020 May; 136():109508. PubMed ID: 32331715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [An efficient marker-free genome editing method for
    Shen Y; Chen Z; Chen J; Zhao B; Lü J; Gui L; Lu F; Li M
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4744-4755. PubMed ID: 36593207
    [No Abstract]   [Full Text] [Related]  

  • 10. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
    Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A
    PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9.
    Garrigues S; Peng M; Kun RS; de Vries RP
    mBio; 2023 Aug; 14(4):e0066823. PubMed ID: 37486124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro CRISPR/Cas9 system for genome editing of Aspergillus niger based on removable bidirectional selection marker AmdS.
    Nan Y; Ouyang L; Chu J
    Biotechnol Appl Biochem; 2021 Oct; 68(5):964-970. PubMed ID: 32729961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [CRISPR/Cas-based genome editing in Aspergillus niger].
    Zheng X; Zheng P; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):980-990. PubMed ID: 33783162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic barcodes allow traceability of CRISPR/Cas9-derived Aspergillus niger strains without affecting their fitness.
    Garrigues S; Kun RS; de Vries RP
    Curr Genet; 2021 Aug; 67(4):673-684. PubMed ID: 33723654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art.
    Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Fusarium fujikuroi and Its Application in Strain Engineering for Gibberellic Acid Production.
    Shi TQ; Gao J; Wang WJ; Wang KF; Xu GQ; Huang H; Ji XJ
    ACS Synth Biol; 2019 Feb; 8(2):445-454. PubMed ID: 30616338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.