These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 30653750)
21. Glycine betaine metabolism is enabled in Hying ZT; Miller TJ; Loh CY; Bazurto JV Appl Environ Microbiol; 2024 Jul; 90(7):e0209023. PubMed ID: 38534142 [TBL] [Abstract][Full Text] [Related]
22. Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways. Nayak DD; Marx CJ J Bacteriol; 2014 Dec; 196(23):4130-9. PubMed ID: 25225269 [TBL] [Abstract][Full Text] [Related]
23. Comparison of the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions. Laukel M; Rossignol M; Borderies G; Völker U; Vorholt JA Proteomics; 2004 May; 4(5):1247-64. PubMed ID: 15188393 [TBL] [Abstract][Full Text] [Related]
24. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Yang YM; Chen WJ; Yang J; Zhou YM; Hu B; Zhang M; Zhu LP; Wang GY; Yang S Microb Cell Fact; 2017 Oct; 16(1):179. PubMed ID: 29084554 [TBL] [Abstract][Full Text] [Related]
25. Metabolomics Revealed an Association of Metabolite Changes and Defective Growth in Methylobacterium extorquens AM1 Overexpressing ecm during Growth on Methanol. Cui J; Good NM; Hu B; Yang J; Wang Q; Sadilek M; Yang S PLoS One; 2016; 11(4):e0154043. PubMed ID: 27116459 [TBL] [Abstract][Full Text] [Related]
26. Bestowing inducibility on the cloned methanol dehydrogenase promoter (PmxaF) of Methylobacterium extorquens by applying regulatory elements of Pseudomonas putida F1. Choi YJ; Morel L; Bourque D; Mullick A; Massie B; Míguez CB Appl Environ Microbiol; 2006 Dec; 72(12):7723-9. PubMed ID: 17041156 [TBL] [Abstract][Full Text] [Related]
27. Identification of a TonB-Dependent Receptor Involved in Lanthanide Switch by the Characterization of Laboratory-Adapted Methylosinus trichosporium OB3b. Shiina W; Ito H; Kamachi T Appl Environ Microbiol; 2023 Jan; 89(1):e0141322. PubMed ID: 36645275 [TBL] [Abstract][Full Text] [Related]
28. Promoters and transcripts for genes involved in methanol oxidation in Methylobacterium extorquens AM1. Zhang M; Lidstrom ME Microbiology (Reading); 2003 Apr; 149(Pt 4):1033-1040. PubMed ID: 12686645 [TBL] [Abstract][Full Text] [Related]
29. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth. Zhang C; Zhou DF; Wang MY; Song YZ; Zhang C; Zhang MM; Sun J; Yao L; Mo XH; Ma ZX; Yuan XJ; Shao Y; Wang HR; Dong SH; Bao K; Lu SH; Sadilek M; Kalyuzhnaya MG; Xing XH; Yang S Nat Commun; 2024 Jul; 15(1):5969. PubMed ID: 39013920 [TBL] [Abstract][Full Text] [Related]
30. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Gourion B; Rossignol M; Vorholt JA Proc Natl Acad Sci U S A; 2006 Aug; 103(35):13186-91. PubMed ID: 16926146 [TBL] [Abstract][Full Text] [Related]
31. Lanthanide-Dependent Regulation of Methylotrophy in Masuda S; Suzuki Y; Fujitani Y; Mitsui R; Nakagawa T; Shintani M; Tani A mSphere; 2018; 3(1):. PubMed ID: 29404411 [No Abstract] [Full Text] [Related]
32. Biochemical and Structural Characterization of XoxG and XoxJ and Their Roles in Lanthanide-Dependent Methanol Dehydrogenase Activity. Featherston ER; Rose HR; McBride MJ; Taylor EM; Boal AK; Cotruvo JA Chembiochem; 2019 Sep; 20(18):2360-2372. PubMed ID: 31017712 [TBL] [Abstract][Full Text] [Related]
33. Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Knief C; Frances L; Vorholt JA Microb Ecol; 2010 Aug; 60(2):440-52. PubMed ID: 20700590 [TBL] [Abstract][Full Text] [Related]
34. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Orita I; Nishikawa K; Nakamura S; Fukui T Appl Microbiol Biotechnol; 2014 Apr; 98(8):3715-25. PubMed ID: 24430207 [TBL] [Abstract][Full Text] [Related]
35. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. Schada von Borzyskowski L; Sonntag F; Pöschel L; Vorholt JA; Schrader J; Erb TJ; Buchhaupt M ACS Synth Biol; 2018 Jan; 7(1):86-97. PubMed ID: 29216425 [TBL] [Abstract][Full Text] [Related]
36. Novel methylotrophy genes of Methylobacterium extorquens AM1 identified by using transposon mutagenesis including a putative dihydromethanopterin reductase. Marx CJ; O'Brien BN; Breezee J; Lidstrom ME J Bacteriol; 2003 Jan; 185(2):669-73. PubMed ID: 12511515 [TBL] [Abstract][Full Text] [Related]
37. Reconstruction of C(3) and C(4) metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. Van Dien SJ; Okubo Y; Hough MT; Korotkova N; Taitano T; Lidstrom ME Microbiology (Reading); 2003 Mar; 149(Pt 3):601-609. PubMed ID: 12634329 [TBL] [Abstract][Full Text] [Related]
38. Discovery of lanthanide-dependent methylotrophy and screening methods for lanthanide-dependent methylotrophs. Tani A; Mitsui R; Nakagawa T Methods Enzymol; 2021; 650():1-18. PubMed ID: 33867018 [TBL] [Abstract][Full Text] [Related]
39. XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. Taubert M; Grob C; Howat AM; Burns OJ; Dixon JL; Chen Y; Murrell JC Environ Microbiol; 2015 Oct; 17(10):3937-48. PubMed ID: 25943904 [TBL] [Abstract][Full Text] [Related]
40. [Biosynthesis of polyhydroxybutyrate/valerate with different molecular weights during the growth of Methylobacterium extorquens G-10 on a methanol-pentanol mixture]. Ezhov VA; Doronina NV; Trotsenko IuA Prikl Biokhim Mikrobiol; 2013; 49(2):171-4. PubMed ID: 23795476 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]