These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 30653778)

  • 1. The supplementary motor area modulates interhemispheric interactions during movement preparation.
    Welniarz Q; Gallea C; Lamy JC; Méneret A; Popa T; Valabregue R; Béranger B; Brochard V; Flamand-Roze C; Trouillard O; Bonnet C; Brüggemann N; Bitoun P; Degos B; Hubsch C; Hainque E; Golmard JL; Vidailhet M; Lehéricy S; Dusart I; Meunier S; Roze E
    Hum Brain Mapp; 2019 May; 40(7):2125-2142. PubMed ID: 30653778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interhemispheric inhibition between dorsal premotor and primary motor cortices is released during preparation of unimanual but not bimanual movements.
    Denyer R; Greeley B; Greenhouse I; Boyd LA
    Eur J Neurosci; 2024 Feb; 59(3):415-433. PubMed ID: 38145976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performing two different actions simultaneously: The critical role of interhemispheric interactions during the preparation of bimanual movement.
    Fujiyama H; Van Soom J; Rens G; Cuypers K; Heise KF; Levin O; Swinnen SP
    Cortex; 2016 Apr; 77():141-154. PubMed ID: 26963084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of interhemispheric communication during complete and partial cancellation of bimanual responses.
    MacDonald HJ; Laksanaphuk C; Day A; Byblow WD; Jenkinson N
    J Neurophysiol; 2021 Mar; 125(3):875-886. PubMed ID: 33567982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-dependent effects of interhemispheric inhibition on motor control.
    Fling BW; Seidler RD
    Behav Brain Res; 2012 Jan; 226(1):211-7. PubMed ID: 21944939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct temporospatial interhemispheric interactions in the human primary and premotor cortex during movement preparation.
    Liuzzi G; Hörniss V; Hoppe J; Heise K; Zimerman M; Gerloff C; Hummel FC
    Cereb Cortex; 2010 Jun; 20(6):1323-31. PubMed ID: 19906807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM.
    Grefkes C; Eickhoff SB; Nowak DA; Dafotakis M; Fink GR
    Neuroimage; 2008 Jul; 41(4):1382-94. PubMed ID: 18486490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements.
    Cardoso de Oliveira S; Gribova A; Donchin O; Bergman H; Vaadia E
    Eur J Neurosci; 2001 Dec; 14(11):1881-96. PubMed ID: 11860483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interhemispheric connectivity between distinct motor regions as a window into bimanual coordination.
    Hinder MR
    J Neurophysiol; 2012 Apr; 107(7):1791-4. PubMed ID: 22131373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of motor overflow on bimanual asymmetric force coordination.
    Cunningham DA; Roelle SM; Allexandre D; Potter-Baker KA; Sankarasubramanian V; Knutson JS; Yue GH; Machado AG; Plow EB
    Exp Brain Res; 2017 Apr; 235(4):1097-1105. PubMed ID: 28091708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control.
    Fujiyama H; Van Soom J; Rens G; Gooijers J; Leunissen I; Levin O; Swinnen SP
    J Neurosci; 2016 Feb; 36(6):1808-22. PubMed ID: 26865607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modulation of short and long-latency interhemispheric inhibition during bimanually coordinated movements.
    Jordan HT; Schrafl-Altermatt M; Byblow WD; Stinear CM
    Exp Brain Res; 2021 May; 239(5):1507-1516. PubMed ID: 33687518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal activity in the primate supplementary motor area and the primary motor cortex in relation to spatio-temporal bimanual coordination.
    Kermadi I; Liu Y; Tempini A; Calciati E; Rouiller EM
    Somatosens Mot Res; 1998; 15(4):287-308. PubMed ID: 9875547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local field potentials related to bimanual movements in the primary and supplementary motor cortices.
    Donchin O; Gribova A; Steinberg O; Bergman H; Cardoso de Oliveira S; Vaadia E
    Exp Brain Res; 2001 Sep; 140(1):46-55. PubMed ID: 11500797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of pre-supplementary motor area (SMA) and SMA proper during unimanual and bimanual complex sequences: an analysis using functional magnetic resonance imaging.
    Toyokura M; Muro I; Komiya T; Obara M
    J Neuroimaging; 2002 Apr; 12(2):172-8. PubMed ID: 11977914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resource-demanding versus cost-effective bimanual interaction in the brain.
    Aramaki Y; Osu R; Sadato N
    Exp Brain Res; 2010 Jun; 203(2):407-18. PubMed ID: 20419370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of transcranial direct current stimulation on antiphase and inphase motor tasks: A pilot study.
    Ryan K; Schranz AL; Duggal N; Bartha R
    Behav Brain Res; 2019 Jul; 366():13-18. PubMed ID: 30851316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas.
    Kermadi I; Liu Y; Rouiller EM
    Somatosens Mot Res; 2000; 17(3):255-71. PubMed ID: 10994596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional connectivity between secondary and primary motor areas underlying hand-foot coordination.
    Byblow WD; Coxon JP; Stinear CM; Fleming MK; Williams G; Müller JF; Ziemann U
    J Neurophysiol; 2007 Jul; 98(1):414-22. PubMed ID: 17507503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAD51 deficiency disrupts the corticospinal lateralization of motor control.
    Gallea C; Popa T; Hubsch C; Valabregue R; Brochard V; Kundu P; Schmitt B; Bardinet E; Bertasi E; Flamand-Roze C; Alexandre N; Delmaire C; Méneret A; Depienne C; Poupon C; Hertz-Pannier L; Cincotta M; Vidailhet M; Lehericy S; Meunier S; Roze E
    Brain; 2013 Nov; 136(Pt 11):3333-46. PubMed ID: 24056534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.