BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30654103)

  • 1. Strengthening mass transfer of carbon dioxide microbubbles dissolver in a horizontal tubular photo-bioreactor for improving microalgae growth.
    Cheng J; Xu J; Ye Q; Lai X; Zhang X; Zhou J
    Bioresour Technol; 2019 Apr; 277():11-17. PubMed ID: 30654103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced generation time and size of carbon dioxide bubbles in a volute aerator for improving Spirulina sp. growth.
    Cheng J; Miao Y; Guo W; Song Y; Tian J; Zhou J
    Bioresour Technol; 2018 Dec; 270():352-358. PubMed ID: 30243242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the gas distributor based on CO
    Huang Y; Zhao S; Ding YD; Liao Q; Huang Y; Zhu X
    Bioresour Technol; 2017 Jun; 233():84-91. PubMed ID: 28260665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing microporous fibrous-diaphragm aerator to decrease bubble generation diameter for improving microalgal growth with CO
    Cheng J; Song Y; Guo W; Miao Y; Chen S; Zhou J
    Bioresour Technol; 2019 Mar; 276():28-34. PubMed ID: 30605836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 Sep; 144():321-7. PubMed ID: 23891832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel magnet-driven rotary mixing aerator for carbon dioxide fixation and microalgae cultivation: Focusing on bubble behavior and cultivation performance.
    Li N; Chen C; Zhong F; Zhang S; Xia A; Huang Y; Liao Q; Zhu X
    J Biotechnol; 2022 Jun; 352():26-35. PubMed ID: 35605791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.
    Yang Z; Cheng J; Lin R; Zhou J; Cen K
    Bioresour Technol; 2016 Jul; 211():429-34. PubMed ID: 27035474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CO2 fixation with microalgae by bubble breakage in raceway ponds with up-down chute baffles.
    Cheng J; Yang Z; Ye Q; Zhou J; Cen K
    Bioresour Technol; 2016 Feb; 201():174-81. PubMed ID: 26642222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 May; 136():496-501. PubMed ID: 23567722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological CO
    Duarte JH; de Morais EG; Radmann EM; Costa JAV
    Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a single helical baffle to increase CO
    Ali Kubar A; Cheng J; Guo W; Kumar S; Song Y
    Bioresour Technol; 2020 Jul; 307():123253. PubMed ID: 32244074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators.
    Yang Z; Cheng J; Liu J; Zhou J; Cen K
    Bioresour Technol; 2016 Sep; 216():267-72. PubMed ID: 27243604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous microalgal biomass production and CO
    Kuo CM; Jian JF; Lin TH; Chang YB; Wan XH; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2016 Dec; 221():241-250. PubMed ID: 27643732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation.
    Acedo M; Gonzalez Cena JR; Kiehlbaugh KM; Ogden KL
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae.
    Tamburic B; Evenhuis CR; Suggett DJ; Larkum AW; Raven JA; Ralph PJ
    ChemSusChem; 2015 Aug; 8(16):2727-36. PubMed ID: 26212226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel jet-aerated tangential swirling-flow plate photobioreactor generates microbubbles that enhance mass transfer and improve microalgal growth.
    Cheng J; Lai X; Ye Q; Guo W; Xu J; Ren W; Zhou J
    Bioresour Technol; 2019 Sep; 288():121531. PubMed ID: 31150969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.
    He L; Chen AB; Yu Y; Kucera L; Tang Y
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.