BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30654103)

  • 21. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generating cycle flow between dark and light zones with double paddlewheels to improve microalgal growth in a flat plate photo-bioreactor.
    Cheng J; Xu J; Lu H; Ye Q; Liu J; Zhou J
    Bioresour Technol; 2018 Aug; 261():151-157. PubMed ID: 29656228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Innovative nanofiber technology to improve carbon dioxide biofixation in microalgae cultivation.
    Vaz BDS; Costa JAV; Morais MG
    Bioresour Technol; 2019 Feb; 273():592-598. PubMed ID: 30481658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of CO₂ fixation by Chlorella kessleri cultivated in a closed raceway photo-bioreactor.
    Kasiri S; Ulrich A; Prasad V
    Bioresour Technol; 2015 Oct; 194():144-55. PubMed ID: 26188557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production.
    Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A
    J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.
    Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A
    Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2.
    Chen W; Zhang S; Rong J; Li X; Chen H; He C; Wang Q
    Environ Sci Technol; 2016 Feb; 50(3):1620-7. PubMed ID: 26751001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microalgae cultivation in a novel top-lit gas-lift open bioreactor.
    Seyed Hosseini N; Shang H; Ross GM; Scott JA
    Bioresour Technol; 2015 Sep; 192():432-40. PubMed ID: 26072276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases.
    de Godos I; Mendoza JL; Acién FG; Molina E; Banks CJ; Heaven S; Rogalla F
    Bioresour Technol; 2014 Feb; 153():307-14. PubMed ID: 24374031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors.
    Hulatt CJ; Thomas DN
    Bioresour Technol; 2011 May; 102(10):5775-87. PubMed ID: 21376576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor.
    Yang Z; Cheng J; Xu X; Zhou J; Cen K
    Bioresour Technol; 2016 Jul; 211():519-26. PubMed ID: 27038260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide.
    Kastánek F; Sabata S; Solcová O; Maléterová Y; Kastánek P; Brányiková I; Kuthan K; Zachleder V
    Waste Manag Res; 2010 Nov; 28(11):961-6. PubMed ID: 20671004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interchangeable modular design and operation of photo-bioreactors for Chlorella vulgaris cultivation towards a zero-waste biorefinery.
    Paladino O; Neviani M
    Enzyme Microb Technol; 2024 Feb; 173():110371. PubMed ID: 38100847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid.
    Tongprawhan W; Srinuanpan S; Cheirsilp B
    Bioresour Technol; 2014 Oct; 170():90-99. PubMed ID: 25125196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofixation of CO2 from synthetic combustion gas using cultivated microalgae in three-stage serial tubular photobioreactors.
    Morais MG; Radmann EM; Costa JA
    Z Naturforsch C J Biosci; 2011; 66(5-6):313-8. PubMed ID: 21812350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of static magnetic fields to increase CO
    Deamici KM; Santos LO; Costa JAV
    Bioresour Technol; 2019 Mar; 276():103-109. PubMed ID: 30612030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fecitrate converted from Fe
    Chu F; Cheng J; Hou W; Yang W; Zhang P; Park JY; Kim H; Xu L
    Sci Total Environ; 2021 Mar; 760():143405. PubMed ID: 33199017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae.
    Yoo JJ; Choi SP; Kim JY; Chang WS; Sim SJ
    Bioprocess Biosyst Eng; 2013 Jun; 36(6):729-36. PubMed ID: 23361185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.