These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30654232)

  • 1. De novo formation and epigenetic maintenance of centromere chromatin.
    Ohzeki J; Larionov V; Earnshaw WC; Masumoto H
    Curr Opin Cell Biol; 2019 Jun; 58():15-25. PubMed ID: 30654232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of centromere chromatin: from nucleosome to chromosomal architecture.
    Schalch T; Steiner FA
    Chromosoma; 2017 Aug; 126(4):443-455. PubMed ID: 27858158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembling pieces of the centromere epigenetics puzzle.
    González-Barrios R; Soto-Reyes E; Herrera LA
    Epigenetics; 2012 Jan; 7(1):3-13. PubMed ID: 22207360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation.
    Shimura M; Toyoda Y; Iijima K; Kinomoto M; Tokunaga K; Yoda K; Yanagida M; Sata T; Ishizaka Y
    J Cell Biol; 2011 Sep; 194(5):721-35. PubMed ID: 21875947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly.
    Vos LJ; Famulski JK; Chan GK
    Biochem Cell Biol; 2006 Aug; 84(4):619-39. PubMed ID: 16936833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HACking the centromere chromatin code: insights from human artificial chromosomes.
    Bergmann JH; Martins NM; Larionov V; Masumoto H; Earnshaw WC
    Chromosome Res; 2012 Jul; 20(5):505-19. PubMed ID: 22825423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and epigenetic regulation of centromeres: a look at HAC formation.
    Ohzeki J; Larionov V; Earnshaw WC; Masumoto H
    Chromosome Res; 2015 Feb; 23(1):87-103. PubMed ID: 25682171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly.
    Hoffmann S; Dumont M; Barra V; Ly P; Nechemia-Arbely Y; McMahon MA; Hervé S; Cleveland DW; Fachinetti D
    Cell Rep; 2016 Nov; 17(9):2394-2404. PubMed ID: 27880912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenomics of centromere assembly and function.
    Stimpson KM; Sullivan BA
    Curr Opin Cell Biol; 2010 Dec; 22(6):772-80. PubMed ID: 20675111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory.
    Martins NMC; Cisneros-Soberanis F; Pesenti E; Kochanova NY; Shang WH; Hori T; Nagase T; Kimura H; Larionov V; Masumoto H; Fukagawa T; Earnshaw WC
    J Cell Sci; 2020 Jul; 133(14):. PubMed ID: 32576667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The centromere: epigenetic control of chromosome segregation during mitosis.
    Westhorpe FG; Straight AF
    Cold Spring Harb Perspect Biol; 2014 Nov; 7(1):a015818. PubMed ID: 25414369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatiotemporal dynamics of chromatin protein HP1α is essential for accurate chromosome segregation during cell division.
    Chu L; Huo Y; Liu X; Yao P; Thomas K; Jiang H; Zhu T; Zhang G; Chaudhry M; Adams G; Thompson W; Dou Z; Jin C; He P; Yao X
    J Biol Chem; 2014 Sep; 289(38):26249-26262. PubMed ID: 25104354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic regulation of centromere formation and kinetochore function.
    Heit R; Underhill DA; Chan G; Hendzel MJ
    Biochem Cell Biol; 2006 Aug; 84(4):605-18. PubMed ID: 16936832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B.
    Ohzeki JI; Otake K; Masumoto H
    Exp Cell Res; 2020 Apr; 389(2):111900. PubMed ID: 32044309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly.
    De Rop V; Padeganeh A; Maddox PS
    Chromosoma; 2012 Dec; 121(6):527-38. PubMed ID: 23095988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere.
    Okamoto Y; Nakano M; Ohzeki J; Larionov V; Masumoto H
    EMBO J; 2007 Mar; 26(5):1279-91. PubMed ID: 17318187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centromere formation: from epigenetics to self-assembly.
    Carroll CW; Straight AF
    Trends Cell Biol; 2006 Feb; 16(2):70-8. PubMed ID: 16412639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function.
    Bergmann JH; Jakubsche JN; Martins NM; Kagansky A; Nakano M; Kimura H; Kelly DA; Turner BM; Masumoto H; Larionov V; Earnshaw WC
    J Cell Sci; 2012 Jan; 125(Pt 2):411-21. PubMed ID: 22331359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N.
    Fang J; Liu Y; Wei Y; Deng W; Yu Z; Huang L; Teng Y; Yao T; You Q; Ruan H; Chen P; Xu RM; Li G
    Genes Dev; 2015 May; 29(10):1058-73. PubMed ID: 25943375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres.
    Folco HD; Pidoux AL; Urano T; Allshire RC
    Science; 2008 Jan; 319(5859):94-7. PubMed ID: 18174443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.