These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30654285)

  • 21. Dynamic characteristics of chlorine dispersion process and quantitative risk assessment of pollution hazard.
    Xin B; Yu J; Dang W; Wan L
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46161-46175. PubMed ID: 33415617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.
    Qi R; Ng D; Cormier BR; Mannan MS
    J Hazard Mater; 2010 Nov; 183(1-3):51-61. PubMed ID: 20692092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 3D Lagrangian particle model for direct plume gamma dose rate calculations.
    Raza S; Avila R
    J Radiol Prot; 2001 Jun; 21(2):145-54. PubMed ID: 11430515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TWODEE: the Health and Safety Laboratory's shallow layer model for heavy gas dispersion. Part 1. Mathematical basis and physical assumptions.
    Hankin RK; Britter RE
    J Hazard Mater; 1999 May; 66(3):211-26. PubMed ID: 10334822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
    Liu X; Godbole A; Lu C; Michal G; Venton P
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):18288-99. PubMed ID: 26374541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport.
    Paris CB; Hénaff ML; Aman ZM; Subramaniam A; Helgers J; Wang DP; Kourafalou VH; Srinivasan A
    Environ Sci Technol; 2012 Dec; 46(24):13293-302. PubMed ID: 23167517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulating and Quantifying Multiple Natural Subsea CO
    Gros J; Schmidt M; Dale AW; Linke P; Vielstädte L; Bigalke N; Haeckel M; Wallmann K; Sommer S
    Environ Sci Technol; 2019 Sep; 53(17):10258-10268. PubMed ID: 31432678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling and simulation of heavy gas dispersion on the basis of modifications in plume path theory.
    Khan FI; Abbasi SA
    J Hazard Mater; 2000 Dec; 80(1-3):15-30. PubMed ID: 11080566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas Dispersion Coefficient Test System and Dimensionless Inversion Method for Porous Media.
    Qin Y; Guo M; Zhang F; Li Z; Liu Q; Tang F
    ACS Omega; 2023 Nov; 8(47):45137-45151. PubMed ID: 38046323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subsea release of oil from a riser: an ecological risk assessment.
    Nazir M; Khan F; Amyotte P; Sadiq R
    Risk Anal; 2008 Oct; 28(5):1173-96. PubMed ID: 18844861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.
    Rakesh PT; Venkatesan R; Hedde T; Roubin P; Baskaran R; Venkatraman B
    J Environ Radioact; 2015 Jul; 145():30-39. PubMed ID: 25863323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection.
    Socolofsky SA; Adams EE; Boufadel MC; Aman ZM; Johansen Ø; Konkel WJ; Lindo D; Madsen MN; North EW; Paris CB; Rasmussen D; Reed M; Rønningen P; Sim LH; Uhrenholdt T; Anderson KG; Cooper C; Nedwed TJ
    Mar Pollut Bull; 2015 Jul; 96(1-2):110-26. PubMed ID: 26021288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Consequence modeling using the fire dynamics simulator.
    Ryder NL; Sutula JA; Schemel CF; Hamer AJ; Van Brunt V
    J Hazard Mater; 2004 Nov; 115(1-3):149-54. PubMed ID: 15518977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of an orifice scrubber performance based on Eulerian/Lagrangian method.
    Mohebbi A; Taheri M; Fathikaljahi J; Talaie MR
    J Hazard Mater; 2003 Jun; 100(1-3):13-25. PubMed ID: 12835009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of a numerical code for the simulation of a short-term CO2 release in an open environment: effect of wind conditions and obstacles.
    Papanikolaou E; Heitsch M; Baraldi D
    J Hazard Mater; 2011 Jun; 190(1-3):268-75. PubMed ID: 21474237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.
    Luketa-Hanlin A; Koopman RP; Ermak DL
    J Hazard Mater; 2007 Feb; 140(3):504-17. PubMed ID: 17113710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment.
    Venetsanos AG; Huld T; Adams P; Bartzis JG
    J Hazard Mater; 2003 Dec; 105(1-3):1-25. PubMed ID: 14623417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.
    Guyonvarch E; Ramin E; Kulahci M; Plósz BG
    Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.