These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 30654487)

  • 21. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications.
    Hu X; Ricci S; Naranjo S; Hill Z; Gawason P
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges.
    Mao J; Zhang Z
    Adv Exp Med Biol; 2018; 1078():347-370. PubMed ID: 30357632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electroconductive natural polymer-based hydrogels.
    Shi Z; Gao X; Ullah MW; Li S; Wang Q; Yang G
    Biomaterials; 2016 Dec; 111():40-54. PubMed ID: 27721086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electroactivity and stability of polylactide/polypyrrole composites.
    Zhang L; Meng S; Zhang Z
    J Biomater Sci Polym Ed; 2011; 22(14):1931-46. PubMed ID: 20961496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications.
    Schöbel L; Boccaccini AR
    Acta Biomater; 2023 Oct; 169():45-65. PubMed ID: 37532132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micropatterned conductive hydrogels as multifunctional muscle-mimicking biomaterials: Graphene-incorporated hydrogels directly patterned with femtosecond laser ablation.
    Park J; Choi JH; Kim S; Jang I; Jeong S; Lee JY
    Acta Biomater; 2019 Oct; 97():141-153. PubMed ID: 31352108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Piezoelectric polymers as biomaterials for tissue engineering applications.
    Ribeiro C; Sencadas V; Correia DM; Lanceros-Méndez S
    Colloids Surf B Biointerfaces; 2015 Dec; 136():46-55. PubMed ID: 26355812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering.
    Distler T; Polley C; Shi F; Schneidereit D; Ashton MD; Friedrich O; Kolb JF; Hardy JG; Detsch R; Seitz H; Boccaccini AR
    Adv Healthc Mater; 2021 May; 10(9):e2001876. PubMed ID: 33711199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroactive Smart Materials for Neural Tissue Regeneration.
    Pinho TS; Cunha CB; Lanceros-Méndez S; Salgado AJ
    ACS Appl Bio Mater; 2021 Sep; 4(9):6604-6618. PubMed ID: 35006964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture.
    Chen C; Chen X; Zhang H; Zhang Q; Wang L; Li C; Dai B; Yang J; Liu J; Sun D
    Acta Biomater; 2017 Jun; 55():434-442. PubMed ID: 28392307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering.
    Mousavi A; Vahdat S; Baheiraei N; Razavi M; Norahan MH; Baharvand H
    ACS Biomater Sci Eng; 2021 Jan; 7(1):55-82. PubMed ID: 33320525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.
    Hirano LA; Escote MT; Martins-Filho LS; Mantovani GL; Scuracchio CH
    Artif Organs; 2011 May; 35(5):478-83. PubMed ID: 21595715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications.
    Zamora-Sequeira R; Ardao I; Starbird R; García-González CA
    Carbohydr Polym; 2018 Jun; 189():304-312. PubMed ID: 29580413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review.
    Qazi TH; Rai R; Boccaccini AR
    Biomaterials; 2014 Nov; 35(33):9068-86. PubMed ID: 25112936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications.
    Min JH; Patel M; Koh WG
    Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30961003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electroactive calcium-alginate/polycaprolactone/reduced graphene oxide nanohybrid hydrogels for skeletal muscle tissue engineering.
    Aparicio-Collado JL; García-San-Martín N; Molina-Mateo J; Torregrosa Cabanilles C; Donderis Quiles V; Serrano-Aroca A; Sabater I Serra R
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112455. PubMed ID: 35305322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review.
    Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductive biomaterials for muscle tissue engineering.
    Dong R; Ma PX; Guo B
    Biomaterials; 2020 Jan; 229():119584. PubMed ID: 31704468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.