These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30654550)

  • 1. Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers.
    Yang W; Jiao L; Liu W; Dai H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30654550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light management in flexible glass by wood cellulose coating.
    Fang ZQ; Zhu HL; Li YY; Liu Z; Dai JQ; Preston C; Garner S; Cimo P; Chai XS; Chen G; Hu LB
    Sci Rep; 2014 Jul; 4():5842. PubMed ID: 25068486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting to Transparent/Hazy Properties: The Case of Alginate/Network Cellulose All-Polysaccharide Composite Films.
    Aburabie J; Eskhan A; Hashaikeh R
    Macromol Rapid Commun; 2022 Sep; 43(17):e2200172. PubMed ID: 35467056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy.
    Fukuzumi H; Saito T; Iwamoto S; Kumamoto Y; Ohdaira T; Suzuki R; Isogai A
    Biomacromolecules; 2011 Nov; 12(11):4057-62. PubMed ID: 21995723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of TEMPO-oxidized cellulose nanofibril length on film properties.
    Fukuzumi H; Saito T; Isogai A
    Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate.
    Soeta H; Fujisawa S; Saito T; Berglund L; Isogai A
    ACS Appl Mater Interfaces; 2015 May; 7(20):11041-6. PubMed ID: 25946413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites.
    Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J
    J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hazy Transparent Cellulose Nanopaper.
    Hsieh MC; Koga H; Suganuma K; Nogi M
    Sci Rep; 2017 Jan; 7():41590. PubMed ID: 28128326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible, Transparent, and Hazy Composite Cellulosic Film with Interconnected Silver Nanowire Networks for EMI Shielding and Joule Heating.
    Zhu M; Yan X; Li X; Dai L; Guo J; Lei Y; Xu Y; Xu H
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45697-45706. PubMed ID: 36178711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-crosslinked cellulose nanofiber based bioplastic films for practical applications.
    Lee K; Jeon Y; Kim D; Kwon G; Kim UJ; Hong C; Choung JW; You J
    Carbohydr Polym; 2021 May; 260():117817. PubMed ID: 33712161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate.
    Tang Q; Fang L; Wang Y; Zou M; Guo W
    Nanoscale; 2018 Mar; 10(9):4344-4353. PubMed ID: 29445814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic, Transparent Films with Aligned Cellulose Nanofibers.
    Zhu M; Wang Y; Zhu S; Xu L; Jia C; Dai J; Song J; Yao Y; Wang Y; Li Y; Henderson D; Luo W; Li H; Minus ML; Li T; Hu L
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro- and nano-fibrils of manau rattan and solvent-exchange-induced high-haze transparent holocellulose nanofibril film.
    Han X; Wang J; Wang J; Ding L; Zhang K; Han J; Jiang S
    Carbohydr Polym; 2022 Dec; 298():120075. PubMed ID: 36241270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.