These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30654690)

  • 1. Changes in the cortical silent period during force control.
    Matsugi A
    Somatosens Mot Res; 2019 Mar; 36(1):8-13. PubMed ID: 30654690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The excitability of human cortical inhibitory circuits responsible for the muscle silent period after transcranial brain stimulation.
    Bertasi V; Bertolasi L; Frasson E; Priori A
    Exp Brain Res; 2000 Jun; 132(3):384-9. PubMed ID: 10883387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of long-interval intracortical inhibition and the silent period by voluntary contraction.
    Hammond G; Vallence AM
    Brain Res; 2007 Jul; 1158():63-70. PubMed ID: 17559815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in Excitability of Corticospinal Pathway and GABA-Mediated Inhibitory Circuits of Primary Motor Cortex Induced by Contraction of Adjacent Hand Muscle.
    Jono Y; Iwata Y; Mizusawa H; Hiraoka K
    Brain Topogr; 2016 Nov; 29(6):834-846. PubMed ID: 27251710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF; Kuzyk S; Jakobi JM; McNeil CJ
    J Neurophysiol; 2020 Feb; 123(2):522-528. PubMed ID: 31774348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of corticospinal motor excitability and cortical silent period from mid-childhood to adulthood - a navigated TMS study.
    Säisänen L; Julkunen P; Lakka T; Lindi V; Könönen M; Määttä S
    Neurophysiol Clin; 2018 Apr; 48(2):65-75. PubMed ID: 29274767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute aerobic exercise modulates primary motor cortex inhibition.
    Mooney RA; Coxon JP; Cirillo J; Glenny H; Gant N; Byblow WD
    Exp Brain Res; 2016 Dec; 234(12):3669-3676. PubMed ID: 27590480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference.
    Zoghi M; Nordstrom MA
    Exp Brain Res; 2007 Feb; 177(2):266-74. PubMed ID: 16947062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
    Lang N; Nitsche MA; Paulus W; Rothwell JC; Lemon RN
    Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional plasticity of surround inhibition in the motor cortex during single finger contraction training.
    Sugawara K; Tanabe S; Higashi T; Suzuki T; Tsurumi T; Kasai T
    Neuroreport; 2012 Aug; 23(11):663-7. PubMed ID: 22643236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial magnetic stimulation reduces masseter motoneuron pool excitability throughout the cortical silent period.
    Sowman PF; Flavel SC; McShane CL; Miles TS; Nordstrom MA
    Clin Neurophysiol; 2008 May; 119(5):1119-29. PubMed ID: 18313355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditioning the cortical silent period with paired transcranial magnetic stimulation.
    Silbert BI; Thickbroom GW
    Brain Stimul; 2013 Jul; 6(4):541-4. PubMed ID: 23092703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study.
    Mooney RA; Cirillo J; Byblow WD
    J Neurophysiol; 2017 Jul; 118(1):425-433. PubMed ID: 28424294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing cortical silent period: optimized stimulus location, intensity and muscle contraction.
    Säisänen L; Pirinen E; Teitti S; Könönen M; Julkunen P; Määttä S; Karhu J
    J Neurosci Methods; 2008 Mar; 169(1):231-8. PubMed ID: 18243329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological processes influencing motor-evoked potential duration with voluntary contraction.
    van den Bos MA; Geevasinga N; Menon P; Burke D; Kiernan MC; Vucic S
    J Neurophysiol; 2017 Mar; 117(3):1156-1162. PubMed ID: 28031404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N; Murakami T; Funase K; Narita T; Kasai T
    Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction.
    Inghilleri M; Berardelli A; Cruccu G; Manfredi M
    J Physiol; 1993 Jul; 466():521-34. PubMed ID: 8410704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.