These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
486 related articles for article (PubMed ID: 30655349)
1. The functional importance of human foot muscles for bipedal locomotion. Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349 [TBL] [Abstract][Full Text] [Related]
2. Active regulation of longitudinal arch compression and recoil during walking and running. Kelly LA; Lichtwark G; Cresswell AG J R Soc Interface; 2015 Jan; 12(102):20141076. PubMed ID: 25551151 [TBL] [Abstract][Full Text] [Related]
3. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
4. Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata). Hirasaki E; Higurashi Y; Kumakura H Am J Phys Anthropol; 2010 May; 142(1):149-56. PubMed ID: 20027608 [TBL] [Abstract][Full Text] [Related]
5. Chimpanzee and human midfoot motion during bipedal walking and the evolution of the longitudinal arch of the foot. Holowka NB; O'Neill MC; Thompson NE; Demes B J Hum Evol; 2017 Mar; 104():23-31. PubMed ID: 28317554 [TBL] [Abstract][Full Text] [Related]
6. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force? Usherwood JR; Channon AJ; Myatt JP; Rankin JW; Hubel TY J R Soc Interface; 2012 Oct; 9(75):2396-402. PubMed ID: 22572024 [TBL] [Abstract][Full Text] [Related]
7. A model of bipedal locomotion on compliant legs. Alexander RM Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684 [TBL] [Abstract][Full Text] [Related]
8. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking. Takahashi KZ; Gross MT; van Werkhoven H; Piazza SJ; Sawicki GS Sci Rep; 2016 Jul; 6():29870. PubMed ID: 27417976 [TBL] [Abstract][Full Text] [Related]
9. Intrinsic foot muscles contribute to elastic energy storage and return in the human foot. Kelly LA; Farris DJ; Cresswell AG; Lichtwark GA J Appl Physiol (1985); 2019 Jan; 126(1):231-238. PubMed ID: 30462568 [TBL] [Abstract][Full Text] [Related]
10. Joint-level mechanics of the walk-to-run transition in humans. Pires NJ; Lay BS; Rubenson J J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752 [TBL] [Abstract][Full Text] [Related]
11. Elastic energy within the human plantar aponeurosis contributes to arch shortening during the push-off phase of running. Wager JC; Challis JH J Biomech; 2016 Mar; 49(5):704-709. PubMed ID: 26944691 [TBL] [Abstract][Full Text] [Related]
12. A dynamic foot model for predictive simulations of human gait reveals causal relations between foot structure and whole-body mechanics. D'Hondt L; De Groote F; Afschrift M PLoS Comput Biol; 2024 Jun; 20(6):e1012219. PubMed ID: 38900787 [TBL] [Abstract][Full Text] [Related]
13. Foot stiffening during the push-off phase of human walking is linked to active muscle contraction, and not the windlass mechanism. Farris DJ; Birch J; Kelly L J R Soc Interface; 2020 Jul; 17(168):20200208. PubMed ID: 32674708 [TBL] [Abstract][Full Text] [Related]
14. The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot. Kelly LA; Farris DJ; Lichtwark GA; Cresswell AG Med Sci Sports Exerc; 2018 Jan; 50(1):98-108. PubMed ID: 28902682 [TBL] [Abstract][Full Text] [Related]
15. Comparison of foot muscle morphology and foot kinematics between recreational runners with normal feet and with asymptomatic over-pronated feet. Zhang X; Aeles J; Vanwanseele B Gait Posture; 2017 May; 54():290-294. PubMed ID: 28390293 [TBL] [Abstract][Full Text] [Related]
17. Shoes alter the spring-like function of the human foot during running. Kelly LA; Lichtwark GA; Farris DJ; Cresswell A J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27307512 [TBL] [Abstract][Full Text] [Related]