BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30655511)

  • 21. An Intriguing Pea-Like Nanostructure of Cobalt Phosphide on Molybdenum Carbide Incorporated Nitrogen-Doped Carbon Nanosheets for Efficient Electrochemical Water Splitting.
    Dutta S; Indra A; Han H; Song T
    ChemSusChem; 2018 Nov; 11(22):3956-3964. PubMed ID: 30232842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering the In-Plane Structure of Metallic Phase Molybdenum Disulfide
    Cao D; Ye K; Moses OA; Xu W; Liu D; Song P; Wu C; Wang C; Ding S; Chen S; Ge B; Jiang J; Song L
    ACS Nano; 2019 Oct; 13(10):11733-11740. PubMed ID: 31525961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly Efficient Hydrogen Evolution from a Mesoporous Hybrid of Nickel Phosphide Nanoparticles Anchored on Cobalt Phosphosulfide/Phosphide Nanosheet Arrays.
    Sun J; Ren M; Yu L; Yang Z; Xie L; Tian F; Yu Y; Ren Z; Chen S; Zhou H
    Small; 2019 Feb; 15(6):e1804272. PubMed ID: 30637939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interfacial engineering of tungstic disulfide-carbide heterojunction for high-current-density hydrogen evolution.
    Wang T; Hong Z; Sun F; Wang B; Jian C; Liu W
    RSC Adv; 2022 Sep; 12(42):27225-27229. PubMed ID: 36276027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction.
    Miao M; Pan J; He T; Yan Y; Xia BY; Wang X
    Chemistry; 2017 Aug; 23(46):10947-10961. PubMed ID: 28474426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A General Route to Prepare Low-Ruthenium-Content Bimetallic Electrocatalysts for pH-Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots.
    Liu Y; Li X; Zhang Q; Li W; Xie Y; Liu H; Shang L; Liu Z; Chen Z; Gu L; Tang Z; Zhang T; Lu S
    Angew Chem Int Ed Engl; 2020 Jan; 59(4):1718-1726. PubMed ID: 31799763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molybdenum Carbide-Oxide Heterostructures: In Situ Surface Reconfiguration toward Efficient Electrocatalytic Hydrogen Evolution.
    He L; Zhang W; Mo Q; Huang W; Yang L; Gao Q
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3544-3548. PubMed ID: 31880061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amorphous molybdenum sulfides as hydrogen evolution catalysts.
    Morales-Guio CG; Hu X
    Acc Chem Res; 2014 Aug; 47(8):2671-81. PubMed ID: 25065612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MoP/Mo
    Zhang LN; Li SH; Tan HQ; Khan SU; Ma YY; Zang HY; Wang YH; Li YG
    ACS Appl Mater Interfaces; 2017 May; 9(19):16270-16279. PubMed ID: 28443336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.
    Liu M; Li J
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2158-65. PubMed ID: 26711014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tungsten-Assisted Phase Tuning of Molybdenum Carbide for Efficient Electrocatalytic Hydrogen Evolution.
    Zhang K; Zhang G; Qu J; Liu H
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2451-2459. PubMed ID: 29298034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction.
    Mahmood J; Li F; Jung SM; Okyay MS; Ahmad I; Kim SJ; Park N; Jeong HY; Baek JB
    Nat Nanotechnol; 2017 May; 12(5):441-446. PubMed ID: 28192390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interface Engineering of MoS2 /Ni3 S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity.
    Zhang J; Wang T; Pohl D; Rellinghaus B; Dong R; Liu S; Zhuang X; Feng X
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6702-7. PubMed ID: 27100374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water.
    Xing Z; Liu Q; Asiri AM; Sun X
    Adv Mater; 2014 Aug; 26(32):5702-7. PubMed ID: 24956199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction.
    Seo B; Joo SH
    Nano Converg; 2017; 4(1):19. PubMed ID: 28798900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction.
    Zhang Z; Hao J; Yang W; Lu B; Tang J
    Nanoscale; 2015 Mar; 7(10):4400-5. PubMed ID: 25685982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.
    Liu Y; Li GD; Yuan L; Ge L; Ding H; Wang D; Zou X
    Nanoscale; 2015 Feb; 7(7):3130-6. PubMed ID: 25611887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values.
    Zhang H; Guo X; Liu W; Wu D; Cao D; Cheng D
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):53-62. PubMed ID: 36049329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Redox-anchoring Approach to Well-dispersed MoC
    Zhou Y; Zhang L; Huang W; Wang M; Chen L; Cui X; Zhang X; Shi J
    Chem Asian J; 2017 Feb; 12(4):446-452. PubMed ID: 28039953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchically Porous W-Doped CoP Nanoflake Arrays as Highly Efficient and Stable Electrocatalyst for pH-Universal Hydrogen Evolution.
    Wang X; Chen Y; Yu B; Wang Z; Wang H; Sun B; Li W; Yang D; Zhang W
    Small; 2019 Sep; 15(37):e1902613. PubMed ID: 31361084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.