BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30655515)

  • 1. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing.
    Oliinyk OS; Shemetov AA; Pletnev S; Shcherbakova DM; Verkhusha VV
    Nat Commun; 2019 Jan; 10(1):279. PubMed ID: 30655515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bright red-shifted miRFP704nano using structural analysis of miRFPnano proteins.
    Oliinyk OS; Pletnev S; Baloban M; Verkhusha VV
    Protein Sci; 2023 Aug; 32(8):e4709. PubMed ID: 37347539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence.
    Rumyantsev KA; Shcherbakova DM; Zakharova NI; Emelyanov AV; Turoverov KK; Verkhusha VV
    Sci Rep; 2015 Dec; 5():18348. PubMed ID: 26679720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins.
    Shcherbakova DM; Baloban M; Pletnev S; Malashkevich VN; Xiao H; Dauter Z; Verkhusha VV
    Chem Biol; 2015 Nov; 22(11):1540-1551. PubMed ID: 26590639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging.
    Shcherbakova DM; Baloban M; Emelyanov AV; Brenowitz M; Guo P; Verkhusha VV
    Nat Commun; 2016 Aug; 7():12405. PubMed ID: 27539380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared fluorescent proteins engineered from bacterial phytochromes.
    Shcherbakova DM; Baloban M; Verkhusha VV
    Curr Opin Chem Biol; 2015 Aug; 27():52-63. PubMed ID: 26115447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of small monomeric and highly bright near-infrared fluorescent proteins.
    Li XD; Tan ZZ; Ding WL; Hou YN; Kong CD; Zhao BQ; Zhao KH
    Biochim Biophys Acta Mol Cell Res; 2019 Oct; 1866(10):1608-1617. PubMed ID: 31295502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome.
    Stepanenko OV; Stepanenko OV; Kuznetsova IM; Shcherbakova DM; Verkhusha VV; Turoverov KK
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28481303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared PAINT localization microscopy via chromophore replenishment of phytochrome-derived fluorescent tag.
    Lu K; Wazawa T; Matsuda T; Shcherbakova DM; Verkhusha VV; Nagai T
    Commun Biol; 2024 Apr; 7(1):473. PubMed ID: 38637683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.
    Piatkevich KD; Subach FV; Verkhusha VV
    Chem Soc Rev; 2013 Apr; 42(8):3441-52. PubMed ID: 23361376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.
    Chernov KG; Redchuk TA; Omelina ES; Verkhusha VV
    Chem Rev; 2017 May; 117(9):6423-6446. PubMed ID: 28401765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Phytochromes, Cyanobacteriochromes and Allophycocyanins as a Source of Near-Infrared Fluorescent Probes.
    Oliinyk OS; Chernov KG; Verkhusha VV
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28771184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor.
    Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R
    FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion.
    Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes.
    Stepanenko OV; Baloban M; Bublikov GS; Shcherbakova DM; Stepanenko OV; Turoverov KK; Kuznetsova IM; Verkhusha VV
    Sci Rep; 2016 Jan; 6():18750. PubMed ID: 26725513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics.
    Hontani Y; Shcherbakova DM; Baloban M; Zhu J; Verkhusha VV; Kennis JT
    Sci Rep; 2016 Nov; 6():37362. PubMed ID: 27857208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Infrared Fluorescent Proteins and Their Applications.
    Karasev MM; Stepanenko OV; Rumyantsev KA; Turoverov KK; Verkhusha VV
    Biochemistry (Mosc); 2019 Jan; 84(Suppl 1):S32-S50. PubMed ID: 31213194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.
    Shcherbakova DM; Stepanenko OV; Turoverov KK; Verkhusha VV
    Trends Biotechnol; 2018 Dec; 36(12):1230-1243. PubMed ID: 30041828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEVELOPMENT OF SINGLE-DOMAIN NEAR-INFRARED FLUORESCENT PROTEIN GAF-FP BASED ON BACTERIAL PHYTOCHROME.
    Rumyantsev KA; Shcherbakova DM; Zaharova NI; Verhusha VV; Turoverov KK
    Tsitologiia; 2016; 58(10):744-54. PubMed ID: 30198695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2.
    Khan FI; Hassan F; Anwer R; Juan F; Lai D
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32906690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.