BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30655515)

  • 41. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging.
    Piatkevich KD; Suk HJ; Kodandaramaiah SB; Yoshida F; DeGennaro EM; Drobizhev M; Hughes TE; Desimone R; Boyden ES; Verkhusha VV
    Biophys J; 2017 Nov; 113(10):2299-2309. PubMed ID: 29017728
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold.
    Fushimi K; Hasegawa M; Ito T; Rockwell NC; Enomoto G; -Win NN; Lagarias JC; Ikeuchi M; Narikawa R
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15573-15580. PubMed ID: 32571944
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore.
    Bhoo SH; Davis SJ; Walker J; Karniol B; Vierstra RD
    Nature; 2001 Dec; 414(6865):776-9. PubMed ID: 11742406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering an E. coli Near-Infrared Light Sensor.
    Ong NT; Olson EJ; Tabor JJ
    ACS Synth Biol; 2018 Jan; 7(1):240-248. PubMed ID: 29091422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling.
    Hou YN; Ding WL; Hu JL; Jiang XX; Tan ZZ; Zhao KH
    Chembiochem; 2019 Nov; 20(21):2777-2783. PubMed ID: 31145526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chromophorylation of a Novel Cyanobacteriochrome GAF Domain from
    Jiang SD; Sheng Y; Wu XJ; Zhu YL; Li PP
    J Microbiol Biotechnol; 2021 Feb; 31(2):233-239. PubMed ID: 33203817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The impact of chromophore choice on the assembly kinetics and primary photochemistry of a red/green cyanobacteriochrome.
    Buhrke D
    Phys Chem Chem Phys; 2021 Sep; 23(37):20867-20874. PubMed ID: 34374395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using Protein Design and Directed Evolution to Monomerize a Bright Near-Infrared Fluorescent Protein.
    Hu X; Xu Y; Yi J; Wang C; Zhu Z; Yue T; Zhang H; Wang X; Wu F; Xue L; Bai L; Liu H; Chen Q
    ACS Synth Biol; 2024 Apr; 13(4):1177-1190. PubMed ID: 38552148
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins.
    Buhrke D; Tavraz NN; Shcherbakova DM; Sauthof L; Moldenhauer M; Vélazquez Escobar F; Verkhusha VV; Hildebrandt P; Friedrich T
    Sci Rep; 2019 Feb; 9(1):1866. PubMed ID: 30755663
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A far-red cyanobacteriochrome lineage specific for verdins.
    Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-infrared STED nanoscopy with an engineered bacterial phytochrome.
    Kamper M; Ta H; Jensen NA; Hell SW; Jakobs S
    Nat Commun; 2018 Nov; 9(1):4762. PubMed ID: 30420676
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein.
    Rodriguez EA; Tran GN; Gross LA; Crisp JL; Shu X; Lin JY; Tsien RY
    Nat Methods; 2016 Sep; 13(9):763-9. PubMed ID: 27479328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bright near-infrared fluorescence bio-labeling with a biliprotein triad.
    Hou YN; Ding WL; Jiang SP; Miao D; Tan ZZ; Hu JL; Scheer H; Zhao KH
    Biochim Biophys Acta Mol Cell Res; 2019 Feb; 1866(2):277-284. PubMed ID: 30471307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome.
    Wang D; Li X; Zhang S; Wang L; Yang X; Zhong D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19731-19736. PubMed ID: 32759207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fluorescent proteins for in vivo imaging, where's the biliverdin?
    Montecinos-Franjola F; Lin JY; Rodriguez EA
    Biochem Soc Trans; 2020 Dec; 48(6):2657-2667. PubMed ID: 33196077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of an miRFP680-Based Fluorescent Calcium Ion Biosensor Using End-Optimized Transposons.
    Chai F; Fujii H; Le GNT; Lin C; Ota K; Lin KM; Pham LMT; Zou P; Drobizhev M; Nasu Y; Terai T; Bito H; Campbell RE
    ACS Sens; 2024 Jun; 9(6):3394-3402. PubMed ID: 38822813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular characterization of D
    Hasegawa M; Fushimi K; Miyake K; Nakajima T; Oikawa Y; Enomoto G; Sato M; Ikeuchi M; Narikawa R
    J Biol Chem; 2018 Feb; 293(5):1713-1727. PubMed ID: 29229775
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elucidating Ultrafast Multiphasic Dynamics in the Photoisomerization of Cyanobacteriochrome.
    Wang D; Li X; Wang L; Yang X; Zhong D
    J Phys Chem Lett; 2020 Oct; 11(20):8819-8824. PubMed ID: 32940473
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of amino acid substitutions on the behavior of a photoactivatable near infrared fluorescent protein PAiRFP1.
    Khan FI; Song H; Hassan F; Tian J; Tang L; Lai D; Juan F
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119572. PubMed ID: 33631627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome.
    Shu X; Royant A; Lin MZ; Aguilera TA; Lev-Ram V; Steinbach PA; Tsien RY
    Science; 2009 May; 324(5928):804-7. PubMed ID: 19423828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.