BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30655517)

  • 1. Domain insertion permissibility-guided engineering of allostery in ion channels.
    Coyote-Maestas W; He Y; Myers CL; Schmidt D
    Nat Commun; 2019 Jan; 10(1):290. PubMed ID: 30655517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted insertional mutagenesis libraries for deep domain insertion profiling.
    Coyote-Maestas W; Nedrud D; Okorafor S; He Y; Schmidt D
    Nucleic Acids Res; 2020 Jan; 48(2):e11. PubMed ID: 31745561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structurally distributed surface sites tune allosteric regulation.
    McCormick JW; Russo MA; Thompson S; Blevins A; Reynolds KA
    Elife; 2021 Jun; 10():. PubMed ID: 34132193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K
    Walsh KB; Gay EA; Blough BE; Geurkink DW
    Eur J Pharmacol; 2017 Nov; 815():233-240. PubMed ID: 28935562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orexin (hypocretin) effects on constitutively active inward rectifier K+ channels in cultured nucleus basalis neurons.
    Hoang QV; Zhao P; Nakajima S; Nakajima Y
    J Neurophysiol; 2004 Dec; 92(6):3183-91. PubMed ID: 15269229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling.
    Coyote-Maestas W; Nedrud D; Suma A; He Y; Matreyek KA; Fowler DM; Carnevale V; Myers CL; Schmidt D
    Nat Commun; 2021 Dec; 12(1):7114. PubMed ID: 34880224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels.
    Inanobe A; Matsuura T; Nakagawa A; Kurachi Y
    Channels (Austin); 2007; 1(1):39-45. PubMed ID: 19151589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.
    Ponce-Balbuena D; López-Izquierdo A; Ferrer T; Rodríguez-Menchaca AA; Aréchiga-Figueroa IA; Sánchez-Chapula JA
    J Pharmacol Exp Ther; 2009 Nov; 331(2):563-73. PubMed ID: 19654266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
    Lee SJ; Ren F; Zangerl-Plessl EM; Heyman S; Stary-Weinzinger A; Yuan P; Nichols CG
    J Gen Physiol; 2016 Sep; 148(3):227-37. PubMed ID: 27527100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion selectivity filter regulates local anesthetic inhibition of G-protein-gated inwardly rectifying K+ channels.
    Slesinger PA
    Biophys J; 2001 Feb; 80(2):707-18. PubMed ID: 11159438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA.
    Oonuma H; Iwasawa K; Iida H; Nagata T; Imuta H; Morita Y; Yamamoto K; Nagai R; Omata M; Nakajima T
    Am J Respir Cell Mol Biol; 2002 Mar; 26(3):371-9. PubMed ID: 11867346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic lentiviral expression of inwardly rectifying K+ channels (Kir2.1) reduces neuronal activity and downregulates voltage-gated potassium currents in hippocampus.
    Okada M; Matsuda H
    Neuroscience; 2008 Oct; 156(2):289-97. PubMed ID: 18713648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3.
    Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G
    Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons.
    Chen X; Johnston D
    J Neurosci; 2005 Apr; 25(15):3787-92. PubMed ID: 15829630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three pairs of weak interactions precisely regulate the G-loop gate of Kir2.1 channel.
    Li J; Xiao S; Xie X; Zhou H; Pang C; Li S; Zhang H; Logothetis DE; Zhan Y; An H
    Proteins; 2016 Dec; 84(12):1929-1937. PubMed ID: 27699887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel.
    Tong Y; Brandt GS; Li M; Shapovalov G; Slimko E; Karschin A; Dougherty DA; Lester HA
    J Gen Physiol; 2001 Feb; 117(2):103-18. PubMed ID: 11158164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering integrin engagement regulates membrane localization of K
    Sengupta S; Rothenberg KE; Li H; Hoffman BD; Bursac N
    J Cell Sci; 2019 Sep; 132(17):. PubMed ID: 31391240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.