BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 30655535)

  • 1. ONECUT2 is a driver of neuroendocrine prostate cancer.
    Guo H; Ci X; Ahmed M; Hua JT; Soares F; Lin D; Puca L; Vosoughi A; Xue H; Li E; Su P; Chen S; Nguyen T; Liang Y; Zhang Y; Xu X; Xu J; Sheahan AV; Ba-Alawi W; Zhang S; Mahamud O; Vellanki RN; Gleave M; Bristow RG; Haibe-Kains B; Poirier JT; Rudin CM; Tsao MS; Wouters BG; Fazli L; Feng FY; Ellis L; van der Kwast T; Berlin A; Koritzinsky M; Boutros PC; Zoubeidi A; Beltran H; Wang Y; He HH
    Nat Commun; 2019 Jan; 10(1):278. PubMed ID: 30655535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications.
    Ramnarine VR; Alshalalfa M; Mo F; Nabavi N; Erho N; Takhar M; Shukin R; Brahmbhatt S; Gawronski A; Kobelev M; Nouri M; Lin D; Tsai H; Lotan TL; Karnes RJ; Rubin MA; Zoubeidi A; Gleave ME; Sahinalp C; Wyatt AW; Volik SV; Beltran H; Davicioni E; Wang Y; Collins CC
    Gigascience; 2018 Jun; 7(6):. PubMed ID: 29757368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer.
    Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A
    Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
    Rotinen M; You S; Yang J; Coetzee SG; Reis-Sobreiro M; Huang WC; Huang F; Pan X; Yáñez A; Hazelett DJ; Chu CY; Steadman K; Morrissey CM; Nelson PS; Corey E; Chung LWK; Freedland SJ; Di Vizio D; Garraway IP; Murali R; Knudsen BS; Freeman MR
    Nat Med; 2018 Dec; 24(12):1887-1898. PubMed ID: 30478421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.
    Li Y; Xie N; Chen R; Lee AR; Lovnicki J; Morrison EA; Fazli L; Zhang Q; Musselman CA; Wang Y; Huang J; Gleave ME; Collins C; Dong X
    Eur Urol; 2019 Aug; 76(2):157-166. PubMed ID: 30910347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZBTB7A as a novel vulnerability in neuroendocrine prostate cancer.
    Bae SY; Bergom HE; Day A; Greene JT; Sychev ZE; Larson G; Corey E; Plymate SR; Freedman TS; Hwang JH; Drake JM
    Front Endocrinol (Lausanne); 2023; 14():1093332. PubMed ID: 37065756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative RNA splicing of the MEAF6 gene facilitates neuroendocrine prostate cancer progression.
    Lee AR; Li Y; Xie N; Gleave ME; Cox ME; Collins CC; Dong X
    Oncotarget; 2017 Apr; 8(17):27966-27975. PubMed ID: 28427194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.
    Lee JK; Phillips JW; Smith BA; Park JW; Stoyanova T; McCaffrey EF; Baertsch R; Sokolov A; Meyerowitz JG; Mathis C; Cheng D; Stuart JM; Shokat KM; Gustafson WC; Huang J; Witte ON
    Cancer Cell; 2016 Apr; 29(4):536-547. PubMed ID: 27050099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network.
    Lee AR; Gan Y; Tang Y; Dong X
    EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition.
    Li Y; Donmez N; Sahinalp C; Xie N; Wang Y; Xue H; Mo F; Beltran H; Gleave M; Wang Y; Collins C; Dong X
    Eur Urol; 2017 Jan; 71(1):68-78. PubMed ID: 27180064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer.
    Tiwari R; Manzar N; Bhatia V; Yadav A; Nengroo MA; Datta D; Carskadon S; Gupta N; Sigouros M; Khani F; Poutanen M; Zoubeidi A; Beltran H; Palanisamy N; Ateeq B
    Nat Commun; 2020 Jan; 11(1):384. PubMed ID: 31959826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor.
    Turpin A; Delliaux C; Parent P; Chevalier H; Escudero-Iriarte C; Bonardi F; Vanpouille N; Flourens A; Querol J; Carnot A; Leroy X; Herranz N; Lanel T; Villers A; Olivier J; Touzet H; de Launoit Y; Tian TV; Duterque-Coquillaud M
    Br J Cancer; 2023 Dec; 129(12):1903-1914. PubMed ID: 37875732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
    Baca SC; Takeda DY; Seo JH; Hwang J; Ku SY; Arafeh R; Arnoff T; Agarwal S; Bell C; O'Connor E; Qiu X; Alaiwi SA; Corona RI; Fonseca MAS; Giambartolomei C; Cejas P; Lim K; He M; Sheahan A; Nassar A; Berchuck JE; Brown L; Nguyen HM; Coleman IM; Kaipainen A; De Sarkar N; Nelson PS; Morrissey C; Korthauer K; Pomerantz MM; Ellis L; Pasaniuc B; Lawrenson K; Kelly K; Zoubeidi A; Hahn WC; Beltran H; Long HW; Brown M; Corey E; Freedman ML
    Nat Commun; 2021 Mar; 12(1):1979. PubMed ID: 33785741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer.
    Li H; Wang L; Li Z; Geng X; Li M; Tang Q; Wu C; Lu Z
    Lab Invest; 2020 Apr; 100(4):570-582. PubMed ID: 31772313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The β
    Braadland PR; Ramberg H; Grytli HH; Urbanucci A; Nielsen HK; Guldvik IJ; Engedal A; Ketola K; Wang W; Svindland A; Mills IG; Bjartell A; Taskén KA
    Mol Cancer Res; 2019 Nov; 17(11):2154-2168. PubMed ID: 31395667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling.
    Luo J; Wang K; Yeh S; Sun Y; Liang L; Xiao Y; Xu W; Niu Y; Cheng L; Maity SN; Jiang R; Chang C
    Nat Commun; 2019 Jun; 10(1):2571. PubMed ID: 31189930
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S
    Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility.
    Jing N; Du X; Liang Y; Tao Z; Bao S; Xiao H; Dong B; Gao WQ; Fang YX
    J Exp Clin Cancer Res; 2024 May; 43(1):144. PubMed ID: 38745318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.