These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30656345)
41. Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries. Lu S; Wang H; Zhou J; Wu X; Qin W Nanoscale; 2017 Jan; 9(3):1184-1192. PubMed ID: 28009909 [TBL] [Abstract][Full Text] [Related]
42. Long-Lifespan Fibrous Aqueous Ni//Bi Battery Enabled by Bi Li Q; Fu J; Zhang L; Zhang W; Wang X; Feng Y; Fu H; Yong Z; Guo J; Tian K; Liu C; Gong W ACS Appl Mater Interfaces; 2024 Jul; 16(28):36413-36422. PubMed ID: 38968574 [TBL] [Abstract][Full Text] [Related]
43. Bimetallic metal-organic framework derived Co Zhong M; Yang DH; Kong LJ; Shuang W; Zhang YH; Bu XH Dalton Trans; 2017 Nov; 46(45):15947-15953. PubMed ID: 29119170 [TBL] [Abstract][Full Text] [Related]
44. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088 [TBL] [Abstract][Full Text] [Related]
45. Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. Chen T; Cheng B; Chen R; Hu Y; Lv H; Zhu G; Wang Y; Ma L; Liang J; Tie Z; Jin Z; Liu J ACS Appl Mater Interfaces; 2016 Oct; 8(40):26834-26841. PubMed ID: 27627613 [TBL] [Abstract][Full Text] [Related]
46. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Hu L; Huang Y; Zhang F; Chen Q Nanoscale; 2013 May; 5(10):4186-90. PubMed ID: 23584557 [TBL] [Abstract][Full Text] [Related]
47. Sulfur-impregnated core-shell hierarchical porous carbon for lithium-sulfur batteries. Zhang FF; Huang G; Wang XX; Qin YL; Du XC; Yin DM; Liang F; Wang LM Chemistry; 2014 Dec; 20(52):17523-9. PubMed ID: 25346404 [TBL] [Abstract][Full Text] [Related]
48. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Dai R; Wang Y; Da P; Wu H; Xu M; Zheng G Nanoscale; 2014 Nov; 6(21):13236-41. PubMed ID: 25260037 [TBL] [Abstract][Full Text] [Related]
49. Metal-Organic Framework Derived Porous Hollow Co Kang W; Zhang Y; Fan L; Zhang L; Dai F; Wang R; Sun D ACS Appl Mater Interfaces; 2017 Mar; 9(12):10602-10609. PubMed ID: 28287697 [TBL] [Abstract][Full Text] [Related]
50. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690 [TBL] [Abstract][Full Text] [Related]
51. Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. Li S; Wang M; Luo Y; Huang J ACS Appl Mater Interfaces; 2016 Jul; 8(27):17343-51. PubMed ID: 27328774 [TBL] [Abstract][Full Text] [Related]
52. A Universal Strategy To Prepare Sulfur-Containing Polymer Composites with Desired Morphologies for Lithium-Sulfur Batteries. Zeng SZ; Zeng X; Tu W; Huang H; Yu L; Yao Y; Jin N; Zhang Q; Zou J ACS Appl Mater Interfaces; 2018 Jul; 10(26):22002-22012. PubMed ID: 29873477 [TBL] [Abstract][Full Text] [Related]
53. Nafion/Titanium Dioxide-Coated Lithium Anode for Stable Lithium-Sulfur Batteries. Jiang S; Lu Y; Lu Y; Han M; Li H; Tao Z; Niu Z; Chen J Chem Asian J; 2018 May; 13(10):1379-1385. PubMed ID: 29582589 [TBL] [Abstract][Full Text] [Related]
54. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries. Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506 [TBL] [Abstract][Full Text] [Related]
55. TiNb2O7 nanoparticles assembled into hierarchical microspheres as high-rate capability and long-cycle-life anode materials for lithium ion batteries. Li H; Shen L; Pang G; Fang S; Luo H; Yang K; Zhang X Nanoscale; 2015 Jan; 7(2):619-24. PubMed ID: 25423342 [TBL] [Abstract][Full Text] [Related]
56. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries. Xie Q; Ma Y; Zeng D; Zhang X; Wang L; Yue G; Peng DL ACS Appl Mater Interfaces; 2014 Nov; 6(22):19895-904. PubMed ID: 25350718 [TBL] [Abstract][Full Text] [Related]
57. Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries. Huang G; Zhang F; Du X; Wang J; Yin D; Wang L Chemistry; 2014 Aug; 20(35):11214-9. PubMed ID: 25044261 [TBL] [Abstract][Full Text] [Related]
58. Few-layered MoS Zhang P; Qin F; Zou L; Wang M; Zhang K; Lai Y; Li J Nanoscale; 2017 Aug; 9(33):12189-12195. PubMed ID: 28805876 [TBL] [Abstract][Full Text] [Related]
59. Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries. Shi L; Chen Y; He R; Chen X; Song H Phys Chem Chem Phys; 2018 Jun; 20(24):16437-16443. PubMed ID: 29873366 [TBL] [Abstract][Full Text] [Related]
60. Assembly of Multifunctional Ni Wu T; Zhang S; He Q; Hong X; Wang F; Wu X; Yang J; Wen Z ACS Appl Mater Interfaces; 2017 Aug; 9(34):28549-28557. PubMed ID: 28762727 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]