These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 30656952)
1. Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Afegbua SL; Batty LC Int J Phytoremediation; 2019; 21(3):200-208. PubMed ID: 30656952 [TBL] [Abstract][Full Text] [Related]
2. Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation. Afegbua SL; Batty LC Environ Sci Pollut Res Int; 2018 Jul; 25(19):18596-18603. PubMed ID: 29704177 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. Chen X; Liu X; Zhang X; Cao L; Hu X J Hazard Mater; 2017 Mar; 325():319-326. PubMed ID: 27951500 [TBL] [Abstract][Full Text] [Related]
4. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Wang Q; Ma L; Zhou Q; Chen B; Zhang X; Wu Y; Pan F; Huang L; Yang X; Feng Y Chemosphere; 2019 Nov; 234():769-776. PubMed ID: 31238273 [TBL] [Abstract][Full Text] [Related]
5. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Joner EJ; Leyval C Environ Sci Technol; 2003 Jun; 37(11):2371-5. PubMed ID: 12831019 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. Li L; Zhu P; Wang X; Zhang Z BMC Biotechnol; 2020 Apr; 20(1):20. PubMed ID: 32345267 [TBL] [Abstract][Full Text] [Related]
7. Effect of soil contamination with polycyclic aromatic hydrocarbons from drilling waste on germination and growth of lawn grasses. Gawryluk A; Stępniowska A; Lipińska H Ecotoxicol Environ Saf; 2022 May; 236():113492. PubMed ID: 35395602 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). Cheema SA; Khan MI; Tang X; Zhang C; Shen C; Malik Z; Ali S; Yang J; Shen K; Chen X; Chen Y J Hazard Mater; 2009 Jul; 166(2-3):1226-31. PubMed ID: 19150175 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Mathur J; Panwar R Environ Sci Pollut Res Int; 2024 Mar; 31(14):21012-21027. PubMed ID: 38383928 [TBL] [Abstract][Full Text] [Related]
10. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. Liu R; Dai Y; Sun L PLoS One; 2015; 10(3):e0120369. PubMed ID: 25822167 [TBL] [Abstract][Full Text] [Related]
11. Co-cropping with three phytoremediation crops influences rhizosphere microbiome community in contaminated soil. Brereton NJB; Gonzalez E; Desjardins D; Labrecque M; Pitre FE Sci Total Environ; 2020 Apr; 711():135067. PubMed ID: 31818595 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of remediation efficiency and ultrastructural translocalization of polycyclic aromatic hydrocarbons in Panwar R; Mathur J Int J Phytoremediation; 2023; 25(13):1743-1761. PubMed ID: 36935611 [TBL] [Abstract][Full Text] [Related]
13. Enhanced arsenic uptake and polycyclic aromatic hydrocarbon (PAH)-dissipation using Pteris vittata L. and a PAH-degrading bacterium. Sun L; Zhu G; Liao X Sci Total Environ; 2018 May; 624():683-690. PubMed ID: 29272837 [TBL] [Abstract][Full Text] [Related]
14. Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue. Zhou XB; Cébron A; Béguiristain T; Leyval C Chemosphere; 2009 Oct; 77(6):709-13. PubMed ID: 19775720 [TBL] [Abstract][Full Text] [Related]
15. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils. Wu Z; Kong Z; Lu S; Huang C; Huang S; He Y; Wu L J Gen Appl Microbiol; 2019 Dec; 65(5):254-264. PubMed ID: 31243191 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar. Alves WS; Manoel EA; Santos NS; Nunes RO; Domiciano GC; Soares MR Int J Phytoremediation; 2018 Jul; 20(8):747-755. PubMed ID: 29775101 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I. Dissipation of target contaminants. Cofield N; Schwab AP; Banks MK Int J Phytoremediation; 2007; 9(5):355-70. PubMed ID: 18246723 [TBL] [Abstract][Full Text] [Related]
18. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Gao Y; Li Q; Ling W; Zhu X J Hazard Mater; 2011 Jan; 185(2-3):703-9. PubMed ID: 20956057 [TBL] [Abstract][Full Text] [Related]
19. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower. Mani D; Kumar C; Patel NK Ecotoxicol Environ Saf; 2016 Feb; 124():435-446. PubMed ID: 26615479 [TBL] [Abstract][Full Text] [Related]
20. Enhanced phytoextraction of multi-metal contaminated soils under increased atmospheric temperature by bioaugmentation with plant growth promoting Bacillus cereus. Bruno LB; Anbuganesan V; Karthik C; Tripti ; Kumar A; Banu JR; Freitas H; Rajkumar M J Environ Manage; 2021 Jul; 289():112553. PubMed ID: 33857710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]