These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30656957)

  • 1. Zonal cultivars of field crops as a reserve for the phytoremediation of fluorides polluted soils.
    Sokolova LG; Zorina SY; Belousova EN
    Int J Phytoremediation; 2019; 21(6):577-582. PubMed ID: 30656957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions.
    Ngo LK; Pinch BM; Bennett WW; Teasdale PR; Jolley DF
    Environ Pollut; 2016 Sep; 216():104-114. PubMed ID: 27239694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil.
    Zheng RL; Li HF; Jiang RF; Zhang FS
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils.
    Wang D; Wen F; Xu C; Tang Y; Luo X
    J Environ Radioact; 2012 Aug; 110():78-83. PubMed ID: 22402224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.
    Marchiol L; Assolari S; Sacco P; Zerbi G
    Environ Pollut; 2004 Nov; 132(1):21-7. PubMed ID: 15276270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Ramírez A; García G; Werner O; Ros RM
    Int J Phytoremediation; 2020; 22(11):1110-1121. PubMed ID: 32107928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).
    Bamgbose I; Anderson TA
    Ecotoxicol Environ Saf; 2015 Dec; 122():268-74. PubMed ID: 26283287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.
    Kim SW; Chae Y; Moon J; Kim D; Cui R; An G; Jeong SW; An YJ
    J Agric Food Chem; 2017 Feb; 65(6):1239-1246. PubMed ID: 28150951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using the pollen viability and morphology for fluoride pollution biomonitoring.
    Malayeri BE; Noori M; Jafari M
    Biol Trace Elem Res; 2012 Jun; 147(1-3):315-9. PubMed ID: 22161315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.
    Mahmood-Ul-Hassan M; Suthar V; Ahmad R; Yousra M
    Environ Monit Assess; 2017 Oct; 189(11):591. PubMed ID: 29086096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.
    Wei R; Ni J; Li X; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7994-8003. PubMed ID: 28108918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic plant production on metal contaminated soils.
    Zheljazkov VD; Craker LE; Xing B; Nielsen NE; Wilcox A
    Sci Total Environ; 2008 Jun; 395(2-3):51-62. PubMed ID: 18353428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops.
    Mayerová M; Petrová Š; Madaras M; Lipavský J; Šimon T; Vaněk T
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14706-14716. PubMed ID: 28456920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S
    J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments.
    Friesl W; Friedl J; Platzer K; Horak O; Gerzabek MH
    Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation.
    Wang A; Wang M; Liao Q; He X
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5410-9. PubMed ID: 26564197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium.
    Hechmi N; Ben Aissa N; Abdennaceur H; Jedidi N
    Int J Phytoremediation; 2013; 15(7):703-13. PubMed ID: 23819269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and lindane.
    Aparicio JD; Garcia-Velasco N; Urionabarrenetxea E; Soto M; Álvarez A; Polti MA
    Ecotoxicol Environ Saf; 2019 Oct; 181():255-263. PubMed ID: 31200198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.