These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3065699)

  • 21. Proteins closely related to spectrin and ankyrin are general components of cell membranes.
    Bennett V; Davis JQ
    Prog Clin Biol Res; 1984; 165():457-72. PubMed ID: 6239291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The xanthine derivative 1-(5'-oxohexyl)-3-methyl-7-propyl xanthine (HWA 285) enhances the actions of adenosine.
    Fredholm BB; Lindström K
    Acta Pharmacol Toxicol (Copenh); 1986 Mar; 58(3):187-92. PubMed ID: 3012941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [In vitro effect of pentoxifylline on the metabolism of glycogen and the secretory process in the parotid and lacrimal extraorbital glands in rats].
    Mauduit P; Herman G; Dreux C; Rossignol B
    Pathol Biol (Paris); 1988 Oct; 36(8 Pt 2):1060-5. PubMed ID: 2851764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defective binding of spectrin to ankyrin in a kindred with recessively inherited hereditary elliptocytosis.
    Zail SS; Coetzer TL
    J Clin Invest; 1984 Sep; 74(3):753-62. PubMed ID: 6236232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concerning the influence of pentoxifylline on the erythrocyte and platelet membranes.
    Stefanovich V
    Naunyn Schmiedebergs Arch Pharmacol; 1977; 297 Suppl 1():S9. PubMed ID: 193056
    [No Abstract]   [Full Text] [Related]  

  • 26. Filterability and pharmacology. Effects of methylxanthine derivatives on red cell phosphorylation.
    Lecomte MC; Boivin P
    Scand J Clin Lab Invest Suppl; 1981; 156():291-5. PubMed ID: 6948392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of pentoxifylline on rat erythrocytes of different age.
    Kramer JJ; Swislocki NI
    Mech Ageing Dev; 1985 Nov; 32(2-3):283-98. PubMed ID: 3003467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impedance spectroscopy of human erythrocyte membrane: effect of frequency at the spectrin denaturation transition temperature.
    Ivanov IT
    Bioelectrochemistry; 2010 Jun; 78(2):181-5. PubMed ID: 19767250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction of Se with SH groups in spectrin is involved in the stabilization of erythrocyte membrane skeleton.
    Yang FY; Yang MZ
    Biochem Int; 1989 Jun; 18(6):1085-91. PubMed ID: 2751677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Erythrocyte deformability in a red cell ageing model.
    Leonhardt H; Grigoleit HG; Reinhardt I
    Ric Clin Lab; 1978; 8(1-2):65-71. PubMed ID: 705180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological influences of pentoxifylline on red cell filterability and 2-3 diphosphoglycerate.
    Le Devehat C; Lemoine A; Cirette B; Ramet M
    Scand J Clin Lab Invest Suppl; 1981; 156():301-3. PubMed ID: 6948394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of hemin with protein 4.1 as compared to spectrin and actin.
    Solar I; Shaklai N
    Biochim Biophys Acta; 1989 Aug; 983(2):199-204. PubMed ID: 2758057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.
    Croall DE; Morrow JS; DeMartino GN
    Biochim Biophys Acta; 1986 Jul; 882(3):287-96. PubMed ID: 3015225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of 2,3-diphosphoglyceric acid on the human erythrocyte membrane phosphorylation system.
    Conway RG; Tao M
    J Biol Chem; 1981 Nov; 256(22):11932-8. PubMed ID: 6271766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions.
    Takakuwa Y; Mohandas N
    J Clin Invest; 1988 Aug; 82(2):394-400. PubMed ID: 3403710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins.
    Klonk S; Deuticke B
    Biochim Biophys Acta; 1992 Apr; 1106(1):143-50. PubMed ID: 1581327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of pentoxifylline on erythrocyte deformability and on phosphatide fatty acid distribution in the erythrocyte membrane.
    Schubotz R; Mühlfellner O
    Curr Med Res Opin; 1977; 4(9):609-17. PubMed ID: 590022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation reduces the affinity of protein 4.1 for spectrin.
    Eder PS; Soong CJ; Tao M
    Biochemistry; 1986 Apr; 25(7):1764-70. PubMed ID: 3707908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of heat and metabolic depletion on erythrocyte deformability, spectrin extractability and phosphorylation.
    Mohandas N; Greenquist AC; Shohet SB
    Prog Clin Biol Res; 1978; 21():453-77. PubMed ID: 662902
    [No Abstract]   [Full Text] [Related]  

  • 40. Correction by pentoxifylline of the abnormal fluorescence polarization of erythrocyte membranes from diabetic patients.
    Rahmani-Jourdheuil D; Juhan-Vague I; Roul C; Mourayre Y; Mishal Z; le Petit J; Vague P
    Eur J Clin Pharmacol; 1987; 31(6):725-8. PubMed ID: 3556379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.