BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 30657037)

  • 1. Advances in Nanoparticle-based Delivery of Next Generation Peptide Nucleic Acids.
    Malik S; Asmara B; Moscato Z; Mukker JK; Bahal R
    Curr Pharm Des; 2018; 24(43):5164-5174. PubMed ID: 30657037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology for delivery of peptide nucleic acids (PNAs).
    Gupta A; Bahal R; Gupta M; Glazer PM; Saltzman WM
    J Control Release; 2016 Oct; 240():302-311. PubMed ID: 26776051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities.
    Quijano E; Bahal R; Ricciardi A; Saltzman WM; Glazer PM
    Yale J Biol Med; 2017 Dec; 90(4):583-598. PubMed ID: 29259523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo.
    Oyaghire SN; Quijano E; Piotrowski-Daspit AS; Saltzman WM; Glazer PM
    Methods Mol Biol; 2020; 2105():261-281. PubMed ID: 32088877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids.
    Kelly IB; Fletcher RB; McBride JR; Weiss SM; Duvall CL
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39602-39611. PubMed ID: 32805967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.
    Bahal R; McNeer NA; Ly DH; Saltzman WM; Glazer PM
    Artif DNA PNA XNA; 2013; 4(2):49-57. PubMed ID: 23954968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair.
    Economos NG; Oyaghire S; Quijano E; Ricciardi AS; Saltzman WM; Glazer PM
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32046275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation.
    Filipovska A; Eccles MR; Smith RA; Murphy MP
    FEBS Lett; 2004 Jan; 556(1-3):180-6. PubMed ID: 14706847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads.
    Neri M; Kang J; Zuidema JM; Gasparello J; Finotti A; Gambari R; Sailor MJ; Bertucci A; Corradini R
    ACS Biomater Sci Eng; 2022 Oct; 8(10):4123-4131. PubMed ID: 34468123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in peptide nucleic acid for cancer bionanotechnology.
    Wu JC; Meng QC; Ren HM; Wang HT; Wu J; Wang Q
    Acta Pharmacol Sin; 2017 Jun; 38(6):798-805. PubMed ID: 28414202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular delivery of antisense peptide nucleic acid by fluorescent mesoporous silica nanoparticles.
    Ma X; Devi G; Qu Q; Toh DF; Chen G; Zhao Y
    Bioconjug Chem; 2014 Aug; 25(8):1412-20. PubMed ID: 25055196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking the potential of chemically modified peptide nucleic acids for RNA-based therapeutics.
    Pradeep SP; Malik S; Slack FJ; Bahal R
    RNA; 2023 Apr; 29(4):434-445. PubMed ID: 36653113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense effects of PNAs in bacteria.
    Goh S; Stach J; Good L
    Methods Mol Biol; 2014; 1050():223-36. PubMed ID: 24297363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers.
    Gambari R
    Curr Pharm Des; 2001 Nov; 7(17):1839-62. PubMed ID: 11562312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide nucleic acid conjugates: synthesis, properties and applications.
    Zhilina ZV; Ziemba AJ; Ebbinghaus SW
    Curr Top Med Chem; 2005; 5(12):1119-31. PubMed ID: 16248787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids.
    Nimesh S; Gupta N; Chandra R
    J Biomed Nanotechnol; 2011 Aug; 7(4):504-20. PubMed ID: 21870455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing.
    Ricciardi AS; Quijano E; Putman R; Saltzman WM; Glazer PM
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29534473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The peptide nucleic acids (PNAs): introduction to a new class of probes for chromosomal investigation.
    Pellestor F; Paulasova P
    Chromosoma; 2004 Jun; 112(8):375-80. PubMed ID: 15156326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide nucleic acids with a structurally biased backbone. Updated review and emerging challenges.
    Corradini R; Sforza S; Tedeschi T; Totsingan F; Manicardi A; Marchelli R
    Curr Top Med Chem; 2011; 11(12):1535-54. PubMed ID: 21510833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo.
    McNeer NA; Schleifman EB; Cuthbert A; Brehm M; Jackson A; Cheng C; Anandalingam K; Kumar P; Shultz LD; Greiner DL; Mark Saltzman W; Glazer PM
    Gene Ther; 2013 Jun; 20(6):658-69. PubMed ID: 23076379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.