These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30657140)

  • 1. Highly selective dual sensing of ATP and ADP using fluorescent ribonucleopeptide sensors.
    Nakano S; Shimizu M; Dinh H; Morii T
    Chem Commun (Camb); 2019 Jan; 55(11):1611-1614. PubMed ID: 30657140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor.
    Strianese M; Milione S; Maranzana A; Grassi A; Pellecchia C
    Chem Commun (Camb); 2012 Dec; 48(93):11419-21. PubMed ID: 23086379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ribonucleopeptide module for effective conversion of an RNA aptamer to a fluorescent sensor.
    Liew FF; Hayashi H; Nakano S; Nakata E; Morii T
    Bioorg Med Chem; 2011 Oct; 19(19):5771-5. PubMed ID: 21906952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence sensing of ADP over ATP and PPi in 100% aqueous solution.
    Huang F; Hao G; Wu F; Feng G
    Analyst; 2015 Sep; 140(17):5873-6. PubMed ID: 26213259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.
    Park Y; Nim-Anussornkul D; Vilaivan T; Morii T; Kim BH
    Bioorg Med Chem Lett; 2018 Jan; 28(2):77-80. PubMed ID: 29248297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ortho-phenylenediamine-based open and macrocyclic receptors in selective sensing of H2PO4(-), ATP and ADP under different conditions.
    Ghosh K; Saha I
    Org Biomol Chem; 2012 Dec; 10(47):9383-92. PubMed ID: 23108334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of ratiometric fluorescent sensors by ribonucleopeptides.
    Annoni C; Nakata E; Tamura T; Liew FF; Nakano S; Gelmi ML; Morii T
    Org Biomol Chem; 2012 Nov; 10(44):8767-9. PubMed ID: 23069733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile conversion of RNA aptamers to modular fluorescent sensors with tunable detection wavelengths.
    Nakano S; Nakata E; Morii T
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4503-6. PubMed ID: 21719284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution.
    Zhang M; Ma WJ; He CT; Jiang L; Lu TB
    Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase.
    Zhang M; Guo SM; Li YR; Zuo P; Ye BC
    Chem Commun (Camb); 2012 Jun; 48(44):5488-90. PubMed ID: 22543727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine.
    Huang CC; Chang HT
    Chem Commun (Camb); 2008 Mar; (12):1461-3. PubMed ID: 18338056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP.
    Liu H; Ma C; Ning F; Chen H; He H; Wang K; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():164-167. PubMed ID: 28038373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes.
    Hagihara M; Fukuda M; Hasegawa T; Morii T
    J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors.
    Nakano S; Fukuda M; Tamura T; Sakaguchi R; Nakata E; Morii T
    J Am Chem Soc; 2013 Mar; 135(9):3465-73. PubMed ID: 23373863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles.
    Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J
    Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Kinase Activity Detection with a Programmable Lanthanide Metal-Organic Framework via ATP-to-ADP Conversion.
    Yu L; Shen Y; Xu Q; Gan Z; Feng Y; Yang C; Xiao Y
    Anal Chem; 2024 Jul; 96(29):12139-12146. PubMed ID: 38990049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles.
    Xu M; Gao Z; Zhou Q; Lin Y; Lu M; Tang D
    Biosens Bioelectron; 2016 Dec; 86():978-984. PubMed ID: 27498324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genetically encoded fluorescent reporter of ATP:ADP ratio.
    Berg J; Hung YP; Yellen G
    Nat Methods; 2009 Feb; 6(2):161-6. PubMed ID: 19122669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural aspects for the recognition of ATP by ribonucleopeptide receptors.
    Nakano S; Mashima T; Matsugami A; Inoue M; Katahira M; Morii T
    J Am Chem Soc; 2011 Mar; 133(12):4567-79. PubMed ID: 21370890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene.
    Xu Z; Spring DR; Yoon J
    Chem Asian J; 2011 Aug; 6(8):2114-22. PubMed ID: 21506284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.