These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 30657147)
21. Predicting Impact Outcomes and Maximum Spreading of Drop Impact on Heated Nanostructures Using Machine Learning. Au-Yeung L; Tsai PA Langmuir; 2023 Dec; 39(50):18327-18341. PubMed ID: 38055354 [TBL] [Abstract][Full Text] [Related]
22. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures. Quan Y; Zhang LZ Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603 [TBL] [Abstract][Full Text] [Related]
23. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings. Liu C; Legchenkova I; Han L; Ge W; Lv C; Feng S; Bormashenko E; Liu Y Langmuir; 2020 Aug; 36(32):9608-9615. PubMed ID: 32787135 [TBL] [Abstract][Full Text] [Related]
24. High jump of impinged droplets before Leidenfrost state. Qiu L; Dubey S; Choo FH; Duan F Phys Rev E; 2019 Mar; 99(3-1):033106. PubMed ID: 30999492 [TBL] [Abstract][Full Text] [Related]
25. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature. Mohammadi M; Tembely M; Dolatabadi A Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630 [TBL] [Abstract][Full Text] [Related]
26. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces. Du J; Li Y; Wu X; Min Q J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970 [TBL] [Abstract][Full Text] [Related]
27. Drop impact on inclined superhydrophobic surfaces. LeClear S; LeClear J; Abhijeet ; Park KC; Choi W J Colloid Interface Sci; 2016 Jan; 461():114-121. PubMed ID: 26397917 [TBL] [Abstract][Full Text] [Related]
28. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio. Mitra S; Evans G Front Chem; 2018; 6():259. PubMed ID: 30013967 [TBL] [Abstract][Full Text] [Related]
29. Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface. Koishi T; Yasuoka K; Zeng XC Langmuir; 2017 Oct; 33(39):10184-10192. PubMed ID: 28876073 [TBL] [Abstract][Full Text] [Related]
30. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
31. Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces with a Ridge. Chen X; Wang YF; Yang YR; Wang XD; Lee DJ Langmuir; 2023 Dec; 39(50):18644-18653. PubMed ID: 38051278 [TBL] [Abstract][Full Text] [Related]
32. Analytical consideration of liquid droplet impingement on solid surfaces. Yonemoto Y; Kunugi T Sci Rep; 2017 May; 7(1):2362. PubMed ID: 28539616 [TBL] [Abstract][Full Text] [Related]
33. Viscous Droplet Impact on Nonwettable Textured Surfaces. Abolghasemibizaki M; Dilmaghani N; Mohammadi R; Castano CE Langmuir; 2019 Aug; 35(33):10752-10761. PubMed ID: 31339727 [TBL] [Abstract][Full Text] [Related]
34. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets. Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923 [TBL] [Abstract][Full Text] [Related]
35. Jumps, somersaults, and symmetry breaking in Leidenfrost drops. Chen S; Bertola V Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234 [TBL] [Abstract][Full Text] [Related]
36. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Hao C; Li J; Liu Y; Zhou X; Liu Y; Liu R; Che L; Zhou W; Sun D; Li L; Xu L; Wang Z Nat Commun; 2015 Aug; 6():7986. PubMed ID: 26250403 [TBL] [Abstract][Full Text] [Related]
37. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface. Liu H; Zheng N; Chen J; Yang D; Wang J Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569 [TBL] [Abstract][Full Text] [Related]
38. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface. Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023 [TBL] [Abstract][Full Text] [Related]
39. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions. Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652 [TBL] [Abstract][Full Text] [Related]
40. Contact time on curved superhydrophobic surfaces. Han J; Kim W; Bae C; Lee D; Shin S; Nam Y; Lee C Phys Rev E; 2020 Apr; 101(4-1):043108. PubMed ID: 32422796 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]