These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30657211)

  • 1. Three-dimensional reconstruction of skin disease using multi-view mobile images.
    Hong G; Lee O
    Skin Res Technol; 2019 Jul; 25(4):434-439. PubMed ID: 30657211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic augmented skin surface generation toward telepalpation from a mobile skin image.
    Kim K
    Skin Res Technol; 2018 May; 24(2):203-212. PubMed ID: 29067717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.
    Lee K; Kim M; Kim K
    Skin Res Technol; 2018 Nov; 24(4):672-685. PubMed ID: 29752745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of 3D skin imaging for objective repeatable quantification of severity of atrophic acne scarring.
    Petit L; Zugaj D; Bettoli V; Dreno B; Kang S; Tan J; Torres V; Layton AM; Martel P
    Skin Res Technol; 2018 Nov; 24(4):542-550. PubMed ID: 29512189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.
    Yu H; Pattichis MS; Agurto C; Beth Goens M
    Biomed Eng Online; 2011 Jan; 10():7. PubMed ID: 21251284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of atrophic acne scars using 3D image analysis with reflected LED light.
    Tanizaki H; Tanioka M; Yamashita Y; Hayashi N
    Skin Res Technol; 2020 Jan; 26(1):20-24. PubMed ID: 31478266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate depth estimation of skin surface using a light-field camera toward dynamic haptic palpation.
    Ko M; Kim D; Kim K
    Skin Res Technol; 2019 Jul; 25(4):469-481. PubMed ID: 30624813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display.
    Fan Z; Weng Y; Chen G; Liao H
    J Biomed Inform; 2017 Jul; 71():154-164. PubMed ID: 28533140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback-assisted three-dimensional reconstruction of the left ventricle with MRI.
    Swingen CM; Seethamraju RT; Jerosch-Herold M
    J Magn Reson Imaging; 2003 May; 17(5):528-37. PubMed ID: 12720262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of left ventricular myocardial scar in coronary artery disease by a three-dimensional MR imaging technique.
    Yin G; Zhao S; Lu M; Ma N; Zuehlsdorff S; Cheng H; Jiang S; Zhao T; Zhang Y; An J; Lv C; He Z
    J Magn Reson Imaging; 2013 Jul; 38(1):72-9. PubMed ID: 23225643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.
    Abudayyeh I; Gordon B; Ansari MM; Jutzy K; Stoletniy L; Hilliard A
    J Interv Cardiol; 2018 Jun; 31(3):375-383. PubMed ID: 28948646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of the computerized scheme for reconstructing three dimensional ultrasonography from the conventional two dimensional dynamic images].
    Nakamura M; Komi M; Tanaka M; Shiraishi J
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2012; 68(12):1617-23. PubMed ID: 23257591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different reconstruction algorithms for three-dimensional ultrasound imaging in a neurosurgical setting.
    Miller D; Lippert C; Vollmer F; Bozinov O; Benes L; Schulte DM; Sure U
    Int J Med Robot; 2012 Sep; 8(3):348-59. PubMed ID: 22374854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [3D display of sequential 2D medical images].
    Lu Y; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):724-7. PubMed ID: 14716887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D surface texture analysis of high-resolution normal fields for facial skin condition assessment.
    Seck A; Dee H; Smith W; Tiddeman B
    Skin Res Technol; 2020 Mar; 26(2):169-186. PubMed ID: 31562658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of acne lesion in acne patients from multispectral images.
    Fujii H; Yanagisawa T; Mitsui M; Murakami Y; Yamaguchi M; Ohyama N; Abe T; Yokoi I; Matsuoka Y; Kubota Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4078-81. PubMed ID: 19163608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms.
    Bodensteiner C; Darolti C; Schumacher H; Matthäus L; Schweikard A
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):177-85. PubMed ID: 18051057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.
    Ahn JJ; Shnorhavorian M; Amies Oelschlager AE; Ripley B; Shivaram GM; Avansino JR; Merguerian PA
    J Pediatr Urol; 2017 Aug; 13(4):395.e1-395.e6. PubMed ID: 28673795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D in-vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology.
    Friedman PM; Skover GR; Payonk G; Kauvar AN; Geronemus RG
    Dermatol Surg; 2002 Mar; 28(3):199-204. PubMed ID: 11896768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.