These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 30657304)
1. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al Zhou Z; Wu S; Li L; Li L; Li X ACS Appl Mater Interfaces; 2019 Feb; 11(6):5978-5988. PubMed ID: 30657304 [TBL] [Abstract][Full Text] [Related]
2. Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting. Zhou Z; Li L; Niu Y; Song H; Xing XS; Guo Z; Wu S Dalton Trans; 2021 Feb; 50(8):2936-2944. PubMed ID: 33555279 [TBL] [Abstract][Full Text] [Related]
3. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
4. Dual Modification Strategy: Passivation Layer and Cocatalyst on Hematite for Improved Photoelectrochemical Water Oxidation. Zhi Y; Leng X; Wang D; Xu L ACS Appl Mater Interfaces; 2024 Oct; 16(40):54058-54066. PubMed ID: 39349386 [TBL] [Abstract][Full Text] [Related]
5. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641 [TBL] [Abstract][Full Text] [Related]
6. In Situ Synthesis of α-Fe Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580 [TBL] [Abstract][Full Text] [Related]
7. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948 [TBL] [Abstract][Full Text] [Related]
8. CoMoO Zhang G; Lu C; Li C; Li S; Zhao X; Nie K; Wang J; Feng K; Zhong J Phys Chem Chem Phys; 2023 May; 25(19):13410-13416. PubMed ID: 37161656 [TBL] [Abstract][Full Text] [Related]
9. Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts. Wang T; Long X; Wei S; Wang P; Wang C; Jin J; Hu G ACS Appl Mater Interfaces; 2020 Nov; 12(44):49705-49712. PubMed ID: 33104336 [TBL] [Abstract][Full Text] [Related]
10. Interface Engineering of CoFe-LDH Modified Ti: α-Fe Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609 [TBL] [Abstract][Full Text] [Related]
11. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation. Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692 [TBL] [Abstract][Full Text] [Related]
12. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. Mayer MT; Du C; Wang D J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199 [TBL] [Abstract][Full Text] [Related]
13. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode. Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959 [TBL] [Abstract][Full Text] [Related]
14. Serial hole transfer layers for a BiVO Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370 [TBL] [Abstract][Full Text] [Related]
15. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
16. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
17. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting. Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422 [TBL] [Abstract][Full Text] [Related]
18. Hematite decorated with nanodot-like cobalt (oxy)hydroxides for boosted photoelectrochemical water oxidation. Chong R; Wang Z; Fan M; Wang L; Chang Z; Zhang L J Colloid Interface Sci; 2023 Jan; 629(Pt B):217-226. PubMed ID: 36152578 [TBL] [Abstract][Full Text] [Related]
19. Engineering Surface Passivation and Hole Transport Layer on Hematite Photoanodes Enabling Robust Photoelectrocatalytic Water Oxidation. Xie H; Song Y; Jiao Y; Gao L; Shi S; Wang C; Hou J ACS Nano; 2024 Feb; ():. PubMed ID: 38343104 [TBL] [Abstract][Full Text] [Related]
20. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting. Gao RT; Liu L; Li Y; Yang Y; He J; Liu X; Zhang X; Wang L; Wu L Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300493120. PubMed ID: 37364112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]