BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30657307)

  • 1. Purine Functional Group Type and Placement Modulate the Interaction with Carbon-Fiber Microelectrodes.
    Lim GN; Ross AE
    ACS Sens; 2019 Feb; 4(2):479-487. PubMed ID: 30657307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry.
    Li Y; Ross AE
    Analyst; 2020 Feb; 145(3):805-815. PubMed ID: 31820742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Detection of DNA and RNA on Carbon Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry.
    Asrat TM; Cho W; Liu FA; Shapiro SM; Bracht JR; Zestos AG
    ACS Omega; 2021 Mar; 6(10):6571-6581. PubMed ID: 33748569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic effects of purines in neurons and glial cells.
    Rathbone MP; Middlemiss PJ; Gysbers JW; Andrew C; Herman MA; Reed JK; Ciccarelli R; Di Iorio P; Caciagli F
    Prog Neurobiol; 1999 Dec; 59(6):663-90. PubMed ID: 10845757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the different effects of fouling mechanisms on working and reference electrodes in fast-scan cyclic voltammetry for neurotransmitter detection.
    Jang J; Cho HU; Hwang S; Kwak Y; Kwon H; Heien ML; Bennet KE; Oh Y; Shin H; Lee KH; Jang DP
    Analyst; 2024 May; 149(10):3008-3016. PubMed ID: 38606455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of graphene oxide-modified carbon-fiber microelectrode for dopamine detection.
    Chang Y; Venton BJ
    Anal Methods; 2020 Jun; 12(22):2893-2902. PubMed ID: 32617123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine.
    Ross AE; Venton BJ
    Analyst; 2012 Jul; 137(13):3045-51. PubMed ID: 22606688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry.
    Gupta B; Perillo ML; Siegenthaler JR; Christensen IE; Welch MP; Rechenberg R; Banna GMHU; Galstyan D; Becker MF; Li W; Purcell EK
    Biosensors (Basel); 2023 May; 13(6):. PubMed ID: 37366941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review-Recent Advances in FSCV Detection of Neurochemicals via Waveform and Carbon Microelectrode Modification.
    Rafi H; Zestos AG
    J Electrochem Soc; 2021 May; 168(5):. PubMed ID: 34108735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platinum Nanoparticle Size and Density Impacts Purine Electrochemistry with Fast-Scan Cyclic Voltammetry.
    Keller AL; Quarin SM; Strobbia P; Ross AE
    J Electrochem Soc; 2022 Apr; 169(4):. PubMed ID: 35497383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amine-functionalized carbon-fiber microelectrodes for enhanced ATP detection with fast-scan cyclic voltammetry.
    Li Y; Weese ME; Cryan MT; Ross AE
    Anal Methods; 2021 May; 13(20):2320-2330. PubMed ID: 33960336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion.
    Tian Y; Mao L; Okajima T; Ohsaka T
    Biosens Bioelectron; 2005 Oct; 21(4):557-64. PubMed ID: 16202868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanohorn-Modified Carbon Fiber Microelectrodes for Dopamine Detection.
    Puthongkham P; Yang C; Venton BJ
    Electroanalysis; 2018 Jun; 30(6):1073-1081. PubMed ID: 30613128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane.
    Zhou L; Hou H; Wei H; Yao L; Sun L; Yu P; Su B; Mao L
    Anal Chem; 2019 Mar; 91(5):3645-3651. PubMed ID: 30688067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode.
    Oliveira-Brett AM; Diculescu V; Piedade JA
    Bioelectrochemistry; 2002 Jan; 55(1-2):61-2. PubMed ID: 11786341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry.
    Swamy BE; Venton BJ
    Anal Chem; 2007 Jan; 79(2):744-50. PubMed ID: 17222045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process.
    Lu L; Liang L; Teh KS; Xie Y; Wan Z; Tang Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28358344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Optimization of a Molecularly Imprinted Carbon Fiber Microelectrode for Selective Detection of Met-enkephalin Using Fast-Scan Cyclic Voltammetry.
    Villarini NA; Robins N; Ou Y
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29728-29736. PubMed ID: 38804619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.