These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30657318)

  • 1. Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor.
    Zhang Q; Chen C; Chen W; Pastel G; Guo X; Liu S; Wang Q; Liu Y; Li J; Yu H; Hu L
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5919-5927. PubMed ID: 30657318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose-based electrodes and separator toward sustainable and flexible all-solid-state supercapacitor.
    Ding Z; Yang X; Tang Y
    Int J Biol Macromol; 2023 Feb; 228():467-477. PubMed ID: 36572083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors.
    Liu B; Kong D; Huang ZX; Mo R; Wang Y; Han Z; Cheng C; Yang HY
    Nanoscale; 2016 May; 8(20):10686-94. PubMed ID: 27151149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.
    Hao P; Zhao Z; Tian J; Li H; Sang Y; Yu G; Cai H; Liu H; Wong CP; Umar A
    Nanoscale; 2014 Oct; 6(20):12120-9. PubMed ID: 25201446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes.
    Liang Q; Wang Y; Yang Y; Xu T; Xu Y; Zhao Q; Heo SH; Kim MS; Jeong YH; Yao S; Song X; Choi SE; Si C
    Front Bioeng Biotechnol; 2022; 10():1024453. PubMed ID: 36267450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.
    Chen W; Yu H; Lee SY; Wei T; Li J; Fan Z
    Chem Soc Rev; 2018 Apr; 47(8):2837-2872. PubMed ID: 29561005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional NiCo
    Yuan Y; Wang W; Yang J; Tang H; Ye Z; Zeng Y; Lu J
    Langmuir; 2017 Oct; 33(40):10446-10454. PubMed ID: 28922606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.
    Lai F; Miao YE; Zuo L; Lu H; Huang Y; Liu T
    Small; 2016 Jun; 12(24):3235-44. PubMed ID: 27135301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Fe
    Jiang H; Niu H; Yang X; Sun Z; Li F; Wang Q; Qu F
    Chemistry; 2018 Jul; 24(42):10683-10688. PubMed ID: 29660802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Self-Assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors.
    Wang DC; Yu HY; Qi D; Ramasamy M; Yao J; Tang F; Tam KMC; Ni Q
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24435-24446. PubMed ID: 31257847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconnected hierarchical NiCo
    Cheng M; Fan H; Song Y; Cui Y; Wang R
    Dalton Trans; 2017 Jul; 46(28):9201-9209. PubMed ID: 28678249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors.
    Ren X; Guo C; Xu L; Li T; Hou L; Wei Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19930-40. PubMed ID: 26301430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review.
    Ji SM; Kumar A
    Polymers (Basel); 2022 Jan; 14(1):. PubMed ID: 35012192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor.
    Kong D; Ren W; Cheng C; Wang Y; Huang Z; Yang HY
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21334-46. PubMed ID: 26372533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Honeycomb-structured carbon aerogels from nanocellulose and skin secretion of Andrias davidianus for highly compressible binder-free supercapacitors.
    Wang Q; Xia T; Jia X; Zhao J; Li Q; Ao C; Deng X; Zhang X; Zhang W; Lu C
    Carbohydr Polym; 2020 Oct; 245():116554. PubMed ID: 32718643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Aerogels of Carbon Nanocellulose Fibers and Mixed-Valent Manganese Oxides as Renewable Supercapacitor Electrodes.
    Guo X; Zhang Q; Li Q; Yu H; Liu Y
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.