These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30657484)
1. A peptide-based four-color fluorescent polydopamine nanoprobe for multiplexed sensing and imaging of proteases in living cells. Xu J; Fang L; Shi M; Huang Y; Yao L; Zhao S; Zhang L; Liang H Chem Commun (Camb); 2019 Jan; 55(11):1651-1654. PubMed ID: 30657484 [TBL] [Abstract][Full Text] [Related]
2. A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Ma L; Liu F; Lei Z; Wang Z Biosens Bioelectron; 2017 Jan; 87():638-645. PubMed ID: 27619527 [TBL] [Abstract][Full Text] [Related]
3. A highly selective, cell-permeable fluorescent nanoprobe for ratiometric detection and imaging of peroxynitrite in living cells. Tian J; Chen H; Zhuo L; Xie Y; Li N; Tang B Chemistry; 2011 Jun; 17(24):6626-34. PubMed ID: 21590826 [TBL] [Abstract][Full Text] [Related]
4. An Au-Se nanoprobe for the evaluation of the invasive potential of breast cancer cells via imaging the sequential activation of uPA and MMP-2. Zhan R; Li X; Zang L; Xu K Analyst; 2020 Feb; 145(3):1008-1013. PubMed ID: 31830149 [TBL] [Abstract][Full Text] [Related]
5. Multilayered Activatable Nanoprobe for Ultra-Bright Tumor Imaging. Lee SK; Han MS; Zhang W; Tung CH Macromol Biosci; 2019 Dec; 19(12):e1900260. PubMed ID: 31743618 [TBL] [Abstract][Full Text] [Related]
6. Determination of Cancer Cell-Based pH-Sensitive Fluorescent Carbon Nanoparticles of Cross-Linked Polydopamine by Fluorescence Sensing of Alkaline Phosphatase Activity on Coated Surfaces and Aqueous Solution. Kang EB; Choi CA; Mazrad ZAI; Kim SH; In I; Park SY Anal Chem; 2017 Dec; 89(24):13508-13517. PubMed ID: 29137454 [TBL] [Abstract][Full Text] [Related]
7. Tumor microenvironment-responsive fluorogenic nanoprobe for ratiometric dual-channel imaging of lymph node metastasis. Cho HJ; Lee S; Park SJ; Lee YD; Jeong K; Park JH; Lee YS; Kim B; Jeong HS; Kim S Colloids Surf B Biointerfaces; 2019 Jul; 179():9-16. PubMed ID: 30928802 [TBL] [Abstract][Full Text] [Related]
8. Activatable imaging probes with amplified fluorescent signals. Lee S; Park K; Kim K; Choi K; Kwon IC Chem Commun (Camb); 2008 Sep; (36):4250-60. PubMed ID: 18802536 [TBL] [Abstract][Full Text] [Related]
9. Targeted delivery of activatable fluorescent pro-apoptotic peptide into live cells. Foillard S; Sancey L; Coll JL; Boturyn D; Dumy P Org Biomol Chem; 2009 Jan; 7(2):221-4. PubMed ID: 19109663 [TBL] [Abstract][Full Text] [Related]
10. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells. Choi CK; Li J; Wei K; Xu YJ; Ho LW; Zhu M; To KK; Choi CH; Bian L J Am Chem Soc; 2015 Jun; 137(23):7337-46. PubMed ID: 25996312 [TBL] [Abstract][Full Text] [Related]
11. Polydopamine nanodots-based cost-effective nanoprobe for glucose detection and intracellular imaging. Yang C; Jing J; Liu Y; Gao M; Zhao H; Gao N; Zhang X Anal Bioanal Chem; 2021 Aug; 413(19):4865-4872. PubMed ID: 34169349 [TBL] [Abstract][Full Text] [Related]
12. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Wu X; Sun S; Wang Y; Zhu J; Jiang K; Leng Y; Shu Q; Lin H Biosens Bioelectron; 2017 Apr; 90():501-507. PubMed ID: 27825883 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of thiol and alkynyl contained SERS reporter molecular and its usage in assembly of polydopamine protected bioorthogonal SERS tag for live cell imaging. Zhang L; Zhang R; Gao M; Zhang X Talanta; 2016 Sep; 158():315-321. PubMed ID: 27343611 [TBL] [Abstract][Full Text] [Related]
14. Expression and activation of proteases in co-cultures. Paduch R; Kandefer-Szerszeń M Exp Toxicol Pathol; 2011 Jan; 63(1-2):79-87. PubMed ID: 19836935 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Zhang X; Wang S; Xu L; Feng L; Ji Y; Tao L; Li S; Wei Y Nanoscale; 2012 Sep; 4(18):5581-4. PubMed ID: 22864922 [TBL] [Abstract][Full Text] [Related]
16. Development of a dual-wavelength fluorescent nanoprobe for in vivo and in vitro cell tracking consecutively. Vu H; Zhou J; Huang Y; Hakamivala A; Khang MK; Tang L Bioorg Med Chem; 2019 May; 27(9):1855-1862. PubMed ID: 30910476 [TBL] [Abstract][Full Text] [Related]
17. pH-dependent and cathepsin B activable CaCO Sun N; Wang D; Yao G; Li X; Mei T; Zhou X; Wong KY; Jiang B; Fang Z Int J Nanomedicine; 2019; 14():4309-4317. PubMed ID: 31354262 [No Abstract] [Full Text] [Related]
19. Enzyme-directed assembly of a nanoparticle probe in tumor tissue. Chien MP; Thompson MP; Barback CV; Ku TH; Hall DJ; Gianneschi NC Adv Mater; 2013 Jul; 25(26):3599-604. PubMed ID: 23712821 [TBL] [Abstract][Full Text] [Related]
20. A core-shell nanoparticle-peptide@metal-organic framework as pH and enzyme dual-recognition switch for stepwise-responsive imaging in living cells. Shen H; Liu J; Lei J; Ju H Chem Commun (Camb); 2018 Aug; 54(66):9155-9158. PubMed ID: 30062341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]