These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30657494)
1. Plasmon-coupled charge transfer in WO Hou X; Luo X; Fan X; Peng Z; Qiu T Phys Chem Chem Phys; 2019 Jan; 21(5):2611-2618. PubMed ID: 30657494 [TBL] [Abstract][Full Text] [Related]
2. A General Method for Large-Scale Fabrication of Semiconducting Oxides with High SERS Sensitivity. Zheng X; Ren F; Zhang S; Zhang X; Wu H; Zhang X; Xing Z; Qin W; Liu Y; Jiang C ACS Appl Mater Interfaces; 2017 Apr; 9(16):14534-14544. PubMed ID: 28398034 [TBL] [Abstract][Full Text] [Related]
3. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. Fan X; Wei P; Li G; Li M; Lan L; Hao Q; Qiu T ACS Appl Mater Interfaces; 2021 Nov; 13(43):51618-51627. PubMed ID: 34674528 [TBL] [Abstract][Full Text] [Related]
4. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing. Kandjani AE; Mohammadtaheri M; Thakkar A; Bhargava SK; Bansal V J Colloid Interface Sci; 2014 Dec; 436():251-7. PubMed ID: 25278363 [TBL] [Abstract][Full Text] [Related]
5. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate. Zhang J; Qu S; Zhang L; Tang A; Wang Z Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):625-30. PubMed ID: 21531614 [TBL] [Abstract][Full Text] [Related]
6. Charge-Transfer Resonance and Surface Defect-Dominated WO Jiang L; Hu Y; Zhang H; Luo X; Yuan R; Yang X Anal Chem; 2022 May; 94(19):6967-6975. PubMed ID: 35289177 [TBL] [Abstract][Full Text] [Related]
7. Porous carbon film/WO Ye Q; Wu M; Xu Q; Zeng S; Jiang T; Xiong W; Fu S; Birowosuto MD; Gu C Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123962. PubMed ID: 38309005 [TBL] [Abstract][Full Text] [Related]
8. Surface-Nanostructured Single Silver Nanowire: A New One-Dimensional Microscale Surface-Enhanced Raman Scattering Interface. Chen M; Zhang H; Ge Y; Yang S; Wang P; Fang Y Langmuir; 2018 Dec; 34(50):15160-15165. PubMed ID: 30485107 [TBL] [Abstract][Full Text] [Related]
9. [Fabrication of silver ordered nanoarrays SERS-active substrates and their applications in bladder cancer cells detection]. Liu Y; Huang LQ; Wang J; Tong HM; Yuan L; Zhao LH; Zhang WW; Wang L; Zhu J Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Feb; 32(2):386-90. PubMed ID: 22512174 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
11. Electrical Tuning of the SERS Enhancement by Precise Defect Density Control. Zhou C; Sun L; Zhang F; Gu C; Zeng S; Jiang T; Shen X; Ang DS; Zhou J ACS Appl Mater Interfaces; 2019 Sep; 11(37):34091-34099. PubMed ID: 31433618 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of SERS-active substrates using silver nanofilm-coated porous anodic aluminum oxide for detection of antibiotics. Chen J; Feng S; Gao F; Grant E; Xu J; Wang S; Huang Q; Lu X J Food Sci; 2015 Apr; 80(4):N834-40. PubMed ID: 25736080 [TBL] [Abstract][Full Text] [Related]
13. Plasmonic Molybdenum Tungsten Oxide Hybrid with Surface-Enhanced Raman Scattering Comparable to that of Noble Metals. Li P; Zhu L; Ma C; Zhang L; Guo L; Liu Y; Ma H; Zhao B ACS Appl Mater Interfaces; 2020 Apr; 12(16):19153-19160. PubMed ID: 32233413 [TBL] [Abstract][Full Text] [Related]
14. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Yang L; Peng Y; Yang Y; Liu J; Huang H; Yu B; Zhao J; Lu Y; Huang Z; Li Z; Lombardi JR Adv Sci (Weinh); 2019 Jun; 6(12):1900310. PubMed ID: 31380169 [TBL] [Abstract][Full Text] [Related]
15. Strong Visible Light Absorption and Abundant Hotspots in Au-Decorated WO Zou JW; Li ZD; Kang HS; Zhao WQ; Liu JC; Chen YL; Ma L; Hou HY; Ding SJ ACS Omega; 2021 Oct; 6(42):28347-28355. PubMed ID: 34723031 [TBL] [Abstract][Full Text] [Related]
16. Oxygen defect-induced localized surface plasmon resonance at the WO Wei W; Yao Y; Zhao Q; Xu Z; Wang Q; Zhang Z; Gao Y Nanoscale; 2019 Mar; 11(12):5535-5547. PubMed ID: 30860537 [TBL] [Abstract][Full Text] [Related]
17. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates. Liu J; Meng G; Li X; Huang Z Langmuir; 2014 Nov; 30(46):13964-9. PubMed ID: 25361441 [TBL] [Abstract][Full Text] [Related]
18. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Feng E; Zheng T; He X; Chen J; Gu Q; He X; Hu F; Li J; Tian Y Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309249. PubMed ID: 37555368 [TBL] [Abstract][Full Text] [Related]
19. Quasi-Metal for Highly Sensitive and Stable Surface-Enhanced Raman Scattering. Tian Z; Bai H; Chen C; Ye Y; Kong Q; Li Y; Fan W; Yi W; Xi G iScience; 2019 Sep; 19():836-849. PubMed ID: 31505331 [TBL] [Abstract][Full Text] [Related]
20. Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection. Xu G; Dong R; Gu D; Tian H; Xiong L; Wang Z; Wang W; Shao Y; Li W; Li G; Zheng X; Yu Y; Feng Y; Dong Y; Zhong G; Zhang B; Li W; Wei L; Yang C; Chen M J Phys Chem Lett; 2022 Feb; 13(6):1453-1463. PubMed ID: 35129342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]