BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30657694)

  • 1. Anti-Stokes Emission from Hot Carriers in Gold Nanorods.
    Cai YY; Sung E; Zhang R; Tauzin LJ; Liu JG; Ostovar B; Zhang Y; Chang WS; Nordlander P; Link S
    Nano Lett; 2019 Feb; 19(2):1067-1073. PubMed ID: 30657694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased Intraband Transitions in Smaller Gold Nanorods Enhance Light Emission.
    Ostovar B; Cai YY; Tauzin LJ; Lee SA; Ahmadivand A; Zhang R; Nordlander P; Link S
    ACS Nano; 2020 Nov; 14(11):15757-15765. PubMed ID: 32852941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light emission from plasmonic nanostructures.
    Cai YY; Tauzin LJ; Ostovar B; Lee S; Link S
    J Chem Phys; 2021 Aug; 155(6):060901. PubMed ID: 34391373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence of Gold Nanorods: Purcell Effect Enhanced Emission from Hot Carriers.
    Cai YY; Liu JG; Tauzin LJ; Huang D; Sung E; Zhang H; Joplin A; Chang WS; Nordlander P; Link S
    ACS Nano; 2018 Feb; 12(2):976-985. PubMed ID: 29283248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Emission from Gold Nanoparticles under Ultrafast Near-Infrared Excitation: Thermal Radiation, Inelastic Light Scattering, or Multiphoton Luminescence?
    Roloff L; Klemm P; Gronwald I; Huber R; Lupton JM; Bange S
    Nano Lett; 2017 Dec; 17(12):7914-7919. PubMed ID: 29182344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation.
    Huang J; Wang W; Murphy CJ; Cahill DG
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):906-11. PubMed ID: 24395798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods.
    Bouhelier A; Bachelot R; Lerondel G; Kostcheev S; Royer P; Wiederrecht GP
    Phys Rev Lett; 2005 Dec; 95(26):267405. PubMed ID: 16486405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
    Fang Y; Chang WS; Willingham B; Swanglap P; Dominguez-Medina S; Link S
    ACS Nano; 2012 Aug; 6(8):7177-84. PubMed ID: 22830934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence of a Plasmonic Molecule.
    Huang D; Byers CP; Wang LY; Hoggard A; Hoener B; Dominguez-Medina S; Chen S; Chang WS; Landes CF; Link S
    ACS Nano; 2015 Jul; 9(7):7072-9. PubMed ID: 26165983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods.
    He Y; Xia K; Lu G; Shen H; Cheng Y; Liu YC; Shi K; Xiao YF; Gong Q
    Nanoscale; 2015 Jan; 7(2):577-82. PubMed ID: 25418974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Raman Effects Enhanced by Surface Plasmon Excitation in Planar Refractory Nanoantennas.
    Kharintsev SS; Kharitonov AV; Saikin SK; Alekseev AM; Kazarian SG
    Nano Lett; 2017 Sep; 17(9):5533-5539. PubMed ID: 28813607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic hot carrier injection from single gold nanoparticles into topological insulator Bi
    Nweze C; Glier TE; Rerrer M; Scheitz S; Huang Y; Zierold R; Blick R; Parak WJ; Huse N; Rübhausen M
    Nanoscale; 2023 Jan; 15(2):507-514. PubMed ID: 36413110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Up-conversion luminescence of gold nanospheres when excited at nonsurface plasmon resonance wavelength by a continuous wave laser.
    Neupane B; Zhao L; Wang G
    Nano Lett; 2013 Sep; 13(9):4087-92. PubMed ID: 23914976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling.
    Wang X; Braun K; Zhang D; Peisert H; Adler H; Chassé T; Meixner AJ
    ACS Nano; 2015 Aug; 9(8):8176-83. PubMed ID: 26200215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated Absorption and Scattering Spectroscopy of Individual Platinum-Decorated Gold Nanorods Reveals Strong Excitation Enhancement in the Nonplasmonic Metal.
    Joplin A; Hosseini Jebeli SA; Sung E; Diemler N; Straney PJ; Yorulmaz M; Chang WS; Millstone JE; Link S
    ACS Nano; 2017 Dec; 11(12):12346-12357. PubMed ID: 29155558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. d-sp Interband Transition Excited Carriers Promoting the Photochemical Growth of Plasmonic Gold Nanoparticles.
    Li J; Shen Q; Li J; Liang J; Wang K; Xia XH
    J Phys Chem Lett; 2020 Oct; 11(19):8322-8328. PubMed ID: 32926629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Modal Nanoplasmonic Light Upconversion through Anti-Stokes Photoluminescence and Second-Harmonic Generation from Broadband Multiresonant Metal Nanocavities.
    Safiabadi Tali SA; Mudiyanselage RRHH; Qian Y; Smith NWG; Zhao Y; Morral A; Song J; Nie M; Magill BA; Khodaparast GA; Zhou W
    ACS Nano; 2023 Jun; 17(12):11362-11373. PubMed ID: 37154668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
    Brandt NC; Keller EL; Frontiera RR
    J Phys Chem Lett; 2016 Aug; 7(16):3179-85. PubMed ID: 27488515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.