BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30658307)

  • 1. Anthropogenically enhanced sediment oxygen demand creates mosaic of oxygen deficient zones in the Ganga River: Implications for river health.
    Jaiswal D; Pandey J
    Ecotoxicol Environ Saf; 2019 Apr; 171():709-720. PubMed ID: 30658307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia and associated feedbacks at sediment-water interface as an early warning signal of resilience shift in an anthropogenically impacted river.
    Jaiswal D; Pandey J
    Environ Res; 2019 Nov; 178():108712. PubMed ID: 31520829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benthic hypoxia in anthropogenically-impacted rivers provides positive feedback enhancing the level of bioavailable metals at sediment-water interface.
    Jaiswal D; Pandey J
    Environ Pollut; 2020 Mar; 258():113643. PubMed ID: 31784273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of COVID-19 lockdown on water quality, microbial extracellular enzyme activity, and sediment-P release in the Ganga River, India.
    Singh M; Pandey U; Pandey J
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60968-60986. PubMed ID: 35435553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial changes in water and heavy metal contamination in water and sediment of river Ganga in the river belt Haridwar to Kanpur.
    Kumar D; Malik DS; Kumar N; Gupta N; Gupta V
    Environ Geochem Health; 2020 Jul; 42(7):2059-2079. PubMed ID: 31786716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: Ecotoxicological implications in the Ganga River (India).
    Jaiswal D; Pandey J
    Ecotoxicol Environ Saf; 2018 Apr; 150():104-115. PubMed ID: 29272714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.
    Yadav A; Pandey J
    Bull Environ Contam Toxicol; 2017 Jul; 99(1):75-82. PubMed ID: 28516255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of point sources and non-point sources to nutrient and carbon loads and their influence on the trophic status of the Ganga River at Varanasi, India.
    Yadav A; Pandey J
    Environ Monit Assess; 2017 Aug; 189(9):475. PubMed ID: 28849425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. River ecosystem resilience risk index: A tool to quantitatively characterize resilience and critical transitions in human-impacted large rivers.
    Jaiswal D; Pandey J
    Environ Pollut; 2021 Jan; 268(Pt B):115771. PubMed ID: 33069044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemistry and magnetic measurements of suspended sediment in urban sewage water vis-à-vis quantification of heavy metal pollution in Ganga and Yamuna Rivers, India.
    Chakarvorty M; Dwivedi AK; Shukla AD; Kumar S; Niyogi A; Usmani M; Pati JK
    Environ Monit Assess; 2015 Sep; 187(9):604. PubMed ID: 26318318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China.
    Rong N; Shan B
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13438-47. PubMed ID: 27026547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water quality assessment of Ganga river in Bihar Region, India.
    Tiwary RK; Rajak GP; Abhishek ; Mondal MR
    J Environ Sci Eng; 2005 Oct; 47(4):326-35. PubMed ID: 17051921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on peculiarities of land-water interface and its use as a stable testbed for accurately predicting changes in ecosystem responses to human perturbations: A sub-watershed scale study with the Ganga River.
    Jaiswal D; Pandey J
    J Environ Manage; 2019 May; 238():178-193. PubMed ID: 30851556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China.
    Wang C; Zhai W; Shan B
    Environ Sci Pollut Res Int; 2016 May; 23(9):8634-43. PubMed ID: 26797955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring sediment oxygen demand for assessment of dissolved oxygen distribution in river.
    Liu WC; Chen WB
    Environ Monit Assess; 2012 Sep; 184(9):5589-99. PubMed ID: 21912865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Concentration of Sulphate Coupled with Climate Warming Generates Ecosystem Feedback Under Sub-Oxic Conditions at Sediment-Water Interface in the Ganga River.
    Gupta B; Pandey S; Pandey J
    Bull Environ Contam Toxicol; 2023 Sep; 111(3):40. PubMed ID: 37707629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COVID-19 lockdown-driven changes in the Ganga River ecosystem in response to human perturbations.
    Singh M; Pandey J
    Environ Monit Assess; 2022 Oct; 194(12):858. PubMed ID: 36208349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements.
    Rong N; Shan B; Wang C
    Int J Environ Res Public Health; 2016 Feb; 13(2):232. PubMed ID: 26907307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ganga River sediments of India predominate with aerobic and chemo-heterotrophic bacteria majorly engaged in the degradation of xenobiotic compounds.
    Srivastava A; Verma D
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):752-772. PubMed ID: 35904740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.