BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30658486)

  • 1. Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries.
    Tang Z; Huang R; Mei C; Sun X; Zhou D; Zhang X; Wu Q
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement.
    Sun X; Wu Q; Lee S; Qing Y; Wu Y
    Sci Rep; 2016 Aug; 6():31654. PubMed ID: 27526784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of New Rheological Models for Class G Cement with Nanoclay as an Additive Using Machine Learning Techniques.
    Tariq Z; Murtaza M; Mahmoud M
    ACS Omega; 2020 Jul; 5(28):17646-17657. PubMed ID: 32715250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.
    Zhou L; He H; Li MC; Song K; Cheng HN; Wu Q
    Carbohydr Polym; 2016 Nov; 153():445-454. PubMed ID: 27561516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids.
    Li MC; Wu Q; Song K; Qing Y; Wu Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):5006-16. PubMed ID: 25679499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Nanoclay Content on Cement Matrix for Oil Wells Subjected to Cyclic Steam Injection.
    Mahmoud AA; Elkatatny S; Ahmed A; Gajbhiye R
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31060281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of glycerol and ionic strength on the rheological behavior of cellulose nanocrystals suspension system.
    Qin Y; Chang R; Ge S; Xiong L; Sun Q
    Int J Biol Macromol; 2017 Sep; 102():1073-1082. PubMed ID: 28476596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of cellulose nanocrystal and nanofibril suspensions.
    Xu J; Wang P; Yuan B; Zhang H
    Carbohydr Polym; 2024 Jan; 324():121527. PubMed ID: 37985059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy of the flow behaviour and disperse phase of cellulose nanoparticles in enhancing oil recovery at reservoir condition.
    Agi A; Junin R; Arsad A; Abbas A; Gbadamosi A; Azli NB; Oseh J
    PLoS One; 2019; 14(9):e0220778. PubMed ID: 31560699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emulsion Stabilization with Functionalized Cellulose Nanoparticles Fabricated Using Deep Eutectic Solvents.
    Ojala J; Visanko M; Laitinen O; Österberg M; Sirviö JA; Liimatainen H
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30366392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment.
    Wang X; Zeng J; Zhu JY
    Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of versatile thiol-norbornene modifications to cellulose nanofibers on rheology and film properties.
    Fein K; Bousfield DW; Gramlich WM
    Carbohydr Polym; 2020 Feb; 230():115672. PubMed ID: 31887920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.
    Sacui IA; Nieuwendaal RC; Burnett DJ; Stranick SJ; Jorfi M; Weder C; Foster EJ; Olsson RT; Gilman JW
    ACS Appl Mater Interfaces; 2014 May; 6(9):6127-38. PubMed ID: 24746103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.
    El Miri N; Abdelouahdi K; Barakat A; Zahouily M; Fihri A; Solhy A; El Achaby M
    Carbohydr Polym; 2015 Sep; 129():156-67. PubMed ID: 26050901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil.
    Li K; Zhang X; Du C; Yang J; Wu B; Guo Z; Dong C; Lin N; Yuan C
    Carbohydr Polym; 2019 Sep; 220():228-235. PubMed ID: 31196545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Modified Starch Admixtures on Selected Physicochemical Properties of Cement Composites.
    Sybis M; Konował E
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment assisted synthesis and characterization of cellulose nanocrystals and cellulose nanofibers from absorbent cotton.
    Abu-Danso E; Srivastava V; Sillanpää M; Bhatnagar A
    Int J Biol Macromol; 2017 Sep; 102():248-257. PubMed ID: 28366848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On rheological properties of disc-shaped cellulose nanocrystals.
    Li J; Wang Z; Wang P; Tian J; Liu T; Guo J; Zhu W; Khan MR; Xiao H; Song J
    Carbohydr Polym; 2024 Apr; 330():121764. PubMed ID: 38368079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.