These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30658487)

  • 1. A Comprehensive Study of the Potential Application of Flying Ethylene-Sensitive Sensors for Ripeness Detection in Apple Orchards.
    Valente J; Almeida R; Kooistra L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information.
    Sun G; Wang X; Yang H; Zhang X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards.
    Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X
    Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data on three-year flowering intensity monitoring in an apple orchard: A collection of RGB images acquired from unmanned aerial vehicles.
    Zhang C; Valente J; Wang W; van Dalfsen P; de Jong PF; Rijk B; Kooistra L
    Data Brief; 2023 Aug; 49():109356. PubMed ID: 37492231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique.
    Apolo-Apolo OE; Pérez-Ruiz M; Martínez-Guanter J; Valente J
    Front Plant Sci; 2020; 11():1086. PubMed ID: 32765566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning.
    Melnychenko O; Scislo L; Savenko O; Sachenko A; Radiuk P
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orchard monitoring based on unmanned aerial vehicles and image processing by artificial neural networks: a systematic review.
    Popescu D; Ichim L; Stoican F
    Front Plant Sci; 2023; 14():1237695. PubMed ID: 38089793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Flight Patterns Evaluation for a UAV-Based Air Pollutant Sensor.
    Araujo JO; Valente J; Kooistra L; Munniks S; Peters RJB
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32796583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and integration of a solar powered unmanned aerial vehicle and a wireless sensor network to monitor greenhouse gases.
    Malaver A; Motta N; Corke P; Gonzalez F
    Sensors (Basel); 2015 Feb; 15(2):4072-96. PubMed ID: 25679312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Multi-Gas Sensor for Remote UAV and UGV Missions-Development and Tests.
    Kaliszewski M; Włodarski M; Młyńczak J; Jankiewicz B; Auer L; Bartosewicz B; Liszewska M; Budner B; Szala M; Schneider B; Povoden G; Kopczyński K
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Distribution of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) Injury at Harvest in Mid-Atlantic Apple Orchards.
    Joseph SV; Stallings JW; Leskey TC; Krawczyk G; Polk D; Butler B; Bergh JC
    J Econ Entomol; 2014 Oct; 107(5):1839-48. PubMed ID: 26309274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of Mucor piriformis in Soil of Apple Orchards in California.
    Guo LY; Michailides TJ; Morgan DP
    Plant Dis; 1999 Feb; 83(2):189-193. PubMed ID: 30849805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach.
    Gao P; Zhang Y; Zhang L; Noguchi R; Ahamed T
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Citrus Fruit Detection System Based on Mobile Platform and Edge Computer Device.
    Huang H; Huang T; Li Z; Lyu S; Hong T
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenology of Infection on Apple Fruit by Sooty Blotch and Flyspeck Species in Iowa Apple Orchards.
    Ismail SI; Batzer JC; Harrington TC; Gleason ML
    Plant Dis; 2016 Feb; 100(2):352-359. PubMed ID: 30694131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.
    Kim IH; Jeon H; Baek SC; Hong WH; Jung HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.