These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 30658573)

  • 1. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data.
    Wang T; Li B; Nelson CE; Nabavi S
    BMC Bioinformatics; 2019 Jan; 20(1):40. PubMed ID: 30658573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data.
    Wang T; Nabavi S
    Methods; 2018 Aug; 145():25-32. PubMed ID: 29702224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Expression Analysis in Single-Cell Transcriptomics.
    Alessandrì L; Arigoni M; Calogero R
    Methods Mol Biol; 2019; 1979():425-432. PubMed ID: 31028652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cell populations with scRNASeq.
    Andrews TS; Hemberg M
    Mol Aspects Med; 2018 Feb; 59():114-122. PubMed ID: 28712804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. aFold - using polynomial uncertainty modelling for differential gene expression estimation from RNA sequencing data.
    Yang W; Rosenstiel P; Schulenburg H
    BMC Genomics; 2019 May; 20(1):364. PubMed ID: 31077153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of differentially expressed genes in discrete single-cell RNA sequencing data using a hurdle model with correlated random effects.
    Sekula M; Gaskins J; Datta S
    Biometrics; 2019 Dec; 75(4):1051-1062. PubMed ID: 31009065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fuzzy method for RNA-Seq differential expression analysis in presence of multireads.
    Consiglio A; Mencar C; Grillo G; Marzano F; Caratozzolo MF; Liuni S
    BMC Bioinformatics; 2016 Nov; 17(Suppl 12):345. PubMed ID: 28185579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MitoTrace: A Computational Framework for Analyzing Mitochondrial Variation in Single-Cell RNA Sequencing Data.
    Wang M; Deng W; Samuels DC; Zhao Z; Simon LM
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data.
    Sun S; Chen Y; Liu Y; Shang X
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):28. PubMed ID: 30953530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictors of breast cancer cell types and their prognostic power in breast cancer patients.
    Wang F; Dohogne Z; Yang J; Liu Y; Soibam B
    BMC Genomics; 2018 Feb; 19(1):137. PubMed ID: 29433432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting differentially expressed genes by smoothing effect of gene length on variance estimation.
    Tang J; Wang F
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542004. PubMed ID: 26608751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
    Zare F; Dow M; Monteleone N; Hosny A; Nabavi S
    BMC Bioinformatics; 2017 May; 18(1):286. PubMed ID: 28569140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance.
    Baccarella A; Williams CR; Parrish JZ; Kim CC
    BMC Bioinformatics; 2018 Nov; 19(1):423. PubMed ID: 30428853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Transcriptome Profiling.
    Shapira G; Shomron N
    Methods Mol Biol; 2021; 2243():311-325. PubMed ID: 33606265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of differential gene expression tools for RNA sequencing time course data.
    Spies D; Renz PF; Beyer TA; Ciaudo C
    Brief Bioinform; 2019 Jan; 20(1):288-298. PubMed ID: 29028903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-step integrated approach to detect differentially expressed genes in RNA-Seq data.
    Al Mahi N; Begum M
    J Bioinform Comput Biol; 2016 Dec; 14(6):1650034. PubMed ID: 27774870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the importance of small changes in RNA expression.
    St Laurent G; Shtokalo D; Tackett MR; Yang Z; Vyatkin Y; Milos PM; Seilheimer B; McCaffrey TA; Kapranov P
    Methods; 2013 Sep; 63(1):18-24. PubMed ID: 23563143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.