BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30658758)

  • 1. Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin.
    Xu H; Lu Y; Zhang T; Liu K; Liu L; He Z; Xu B; Wu X
    Food Chem; 2019 May; 281():28-35. PubMed ID: 30658758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols.
    Wu X; Lu Y; Xu H; Lin D; He Z; Wu H; Liu L; Wang Z
    Food Chem; 2018 Aug; 256():427-434. PubMed ID: 29606470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-induced conformational transitions of beta-lactoglobulin.
    Zhang X; Keiderling TA
    Biochemistry; 2006 Jul; 45(27):8444-52. PubMed ID: 16819842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of binding interaction between (-)-epigallocatechin (EGC) and β-lactoglobulin by multi-spectroscopic method.
    Wu X; Wu H; Liu M; Liu Z; Xu H; Lai F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):164-8. PubMed ID: 21820944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the interaction of two chemotherapeutic drugs of oxali-palladium and 5-fluorouracil simultaneously with milk carrier protein of β-lactoglobulin.
    Leilabadi-Asl A; Divsalar A; Saboury AA; Parivar K
    Int J Biol Macromol; 2018 Jun; 112():422-432. PubMed ID: 29339282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic and hydrophobic interactions governing the interaction and binding of beta-lactoglobulin to membranes.
    Zhang X; Ge N; Keiderling TA
    Biochemistry; 2007 May; 46(17):5252-60. PubMed ID: 17407268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and dynamic spectroscopic studies of the interaction of monomeric β-lactoglobulin with lipid vesicles at low pH.
    Zhang G; Keiderling TA
    Biochemistry; 2014 May; 53(19):3079-87. PubMed ID: 24773452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies of interaction of β-lactoglobulin with three polyphenols.
    Xu J; Hao M; Sun Q; Tang L
    Int J Biol Macromol; 2019 Sep; 136():804-812. PubMed ID: 31228500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts.
    He Z; Zhu H; Xu M; Zeng M; Qin F; Chen J
    Food Chem; 2016 Oct; 209():234-40. PubMed ID: 27173557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of Interaction between Whey Proteins and Proanthocyanidins and Its Protective Effects on Proanthocyanidins during In-Vitro Digestion and Storage.
    Tang C; Tan B; Sun X
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of the β-lactoglobulin conjugated with fluorescein isothiocyanate: Binding sites and structure changes as function of pH.
    Zhang X; Hemar Y; Lv L; Zhao T; Yang Y; Han Z; Li M; He J
    Int J Biol Macromol; 2019 Nov; 140():377-383. PubMed ID: 31445144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey.
    Estévez N; Fuciños P; Bargiela V; Pastrana L; Tovar CA; Luisa Rúa M
    Food Chem; 2016 May; 198():45-53. PubMed ID: 26769503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin.
    Cheng J; Liu JH; Prasanna G; Jing P
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):965-972. PubMed ID: 28751048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical and computational comparison on the binding affinity of three important nutrients to β-lactoglobulin: folic acid, ascorbic acid and vitamin K3.
    Shahraki S; Heydari A; Saeidifar M; Gomroki M
    J Biomol Struct Dyn; 2018 Nov; 36(14):3651-3665. PubMed ID: 29058531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of safranal to whey proteins in aqueous solution: Combination of headspace solid-phase microextraction/gas chromatography with multi spectroscopic techniques and docking studies.
    Feyzi S; Varidi M; Housaindokht MR; Es'haghi Z
    Food Chem; 2019 Jul; 287():313-323. PubMed ID: 30857705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs.
    Shahraki S; Shiri F; Heidari Majd M; Dahmardeh S
    J Biomol Struct Dyn; 2019 May; 37(8):2072-2085. PubMed ID: 29768984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pH on viscoelastic properties of heat-induced gels obtained with a β-Lactoglobulin fraction isolated from bovine milk whey hydrolysates.
    Estévez N; Fuciños P; Bargiela V; Picó G; Valetti NW; Tovar CA; Rúa ML
    Food Chem; 2017 Mar; 219():169-178. PubMed ID: 27765213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of the interaction of β-lactoglobulin with model membranes: stopped-flow CD and fluorescence studies.
    Ge N; Zhang X; Keiderling TA
    Biochemistry; 2010 Oct; 49(41):8831-8. PubMed ID: 20822106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Hydrogen Bond Involving Acridone Trapped in a Hydrophobic Biological Nanocavity: Integrated Spectroscopic and Docking Analyses.
    Chakraborty B; Sengupta C; Pal U; Basu S
    Langmuir; 2020 Feb; 36(5):1241-1251. PubMed ID: 31951141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.