These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30658814)
1. Melt-processing of bionanocomposites based on ethylene-co-vinyl acetate and starch nanocrystals. Sessini V; Raquez JM; Kenny JM; Dubois P; Peponi L Carbohydr Polym; 2019 Mar; 208():382-390. PubMed ID: 30658814 [TBL] [Abstract][Full Text] [Related]
2. Compatible blends of thermoplastic starch and hydrolyzed ethylene-vinyl acetate copolymers. Da Róz AL; Ferreira AM; Yamaji FM; Carvalho AJ Carbohydr Polym; 2012 Sep; 90(1):34-40. PubMed ID: 24751007 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of waxy maize starch nanocrystals with a high yield via dry-heated oxalic acid hydrolysis. Zhou L; Fang D; Wang M; Li M; Li Y; Ji N; Dai L; Lu H; Xiong L; Sun Q Food Chem; 2020 Jul; 318():126479. PubMed ID: 32135423 [TBL] [Abstract][Full Text] [Related]
8. Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Hao Y; Chen Y; Li Q; Gao Q Carbohydr Polym; 2018 Mar; 184():171-177. PubMed ID: 29352908 [TBL] [Abstract][Full Text] [Related]
9. An Efficient Approach to Prepare Water-Redispersible Starch Nanocrystals from Waxy Potato Starch. Wang H; Liu C; Shen R; Gao J; Li J Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33572951 [TBL] [Abstract][Full Text] [Related]
10. Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology. Tesfaye M; Patwa R; Gupta A; Kashyap MJ; Katiyar V Int J Biol Macromol; 2017 Aug; 101():580-594. PubMed ID: 28322953 [TBL] [Abstract][Full Text] [Related]
11. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. da Silva JB; Pereira FV; Druzian JI J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979 [TBL] [Abstract][Full Text] [Related]
12. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites. Zubkiewicz A; Szymczyk A; Franciszczak P; Kochmanska A; Janowska I; Paszkiewicz S Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872301 [TBL] [Abstract][Full Text] [Related]
13. Surface chemical functionalization of starch nanocrystals modified by 3-aminopropyl triethoxysilane. Hao Y; Chen Y; Xia H; Gao Q Int J Biol Macromol; 2019 Apr; 126():987-993. PubMed ID: 30584940 [TBL] [Abstract][Full Text] [Related]
14. An approach for compatibilization of the starch with poly(lactic acid) and ethylene-vinyl acetate-glycidyl-methacrylate. Wang P; Xiong Z; Fei P; Cai J; Walayat N; Xiong H Int J Biol Macromol; 2020 Oct; 161():44-58. PubMed ID: 32512092 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Dai L; Li C; Zhang J; Cheng F Carbohydr Polym; 2018 Jan; 180():122-127. PubMed ID: 29103487 [TBL] [Abstract][Full Text] [Related]
17. Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate-Carbon Nanofiller Nanocomposites. George JJ; Bhowmick AK Nanoscale Res Lett; 2009 Mar; 4(7):655-64. PubMed ID: 20596353 [TBL] [Abstract][Full Text] [Related]
18. Development of pullulan-based nanocomposite films reinforced with starch nanocrystals for the preservation of fresh beef. Dai M; Xiong X; Cheng A; Zhao Z; Xiao Q J Sci Food Agric; 2023 Mar; 103(4):1981-1993. PubMed ID: 36260277 [TBL] [Abstract][Full Text] [Related]
20. Pre-dispersed organo-montmorillonite (organo-MMT) nanofiller: Morphology, cytocompatibility and impact on flexibility, toughness and biostability of biomedical ethyl vinyl acetate (EVA) copolymer. Osman AF; M Fitri TF; Rakibuddin M; Hashim F; Tuan Johari SAT; Ananthakrishnan R; Ramli R Mater Sci Eng C Mater Biol Appl; 2017 May; 74():194-206. PubMed ID: 28254285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]