These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30658851)

  • 21. Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection.
    Zhou Y; Song X; Zhang Y; Liu F; Zhu C; Liu L
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2454-2465. PubMed ID: 34170831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-supervised approach to event time annotation using longitudinal electronic health records.
    Liang L; Hou J; Uno H; Cho K; Ma Y; Cai T
    Lifetime Data Anal; 2022 Jul; 28(3):428-491. PubMed ID: 35753014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acute vital signs changes are underrepresented by a conventional electronic health record when compared with automatically acquired data in a single-center tertiary pediatric cardiac intensive care unit.
    Lowry AW; Futterman CA; Gazit AZ
    J Am Med Inform Assoc; 2022 Jun; 29(7):1183-1190. PubMed ID: 35301538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Validity of cluster headache diagnoses in an electronic health record data repository.
    Rizzoli P; Loder E; Joshi S
    Headache; 2016 Jul; 56(7):1132-6. PubMed ID: 27273524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Outlier Detection in Health Record Free-Text using Deep Learning.
    Wallace D; Kecahdi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():550-555. PubMed ID: 31945959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adult patient access to electronic health records.
    Ammenwerth E; Neyer S; Hörbst A; Mueller G; Siebert U; Schnell-Inderst P
    Cochrane Database Syst Rev; 2021 Feb; 2(2):CD012707. PubMed ID: 33634854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.
    Chen J; Jagannatha AN; Fodeh SJ; Yu H
    JMIR Med Inform; 2017 Oct; 5(4):e42. PubMed ID: 29089288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records.
    Ng K; Ghoting A; Steinhubl SR; Stewart WF; Malin B; Sun J
    J Biomed Inform; 2014 Apr; 48():160-70. PubMed ID: 24370496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A cross-sectional survey exploring attitudes towards provincial electronic health record implementation among clients attending the Provincial Sexually Transmitted Infections Clinic in British Columbia.
    Pedersen H; Taylor D; Gilbert M; Achen M; Lester R; Ogilvie G
    Sex Transm Infect; 2015 Feb; 91(1):44-8. PubMed ID: 25480149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Safe use of electronic health records and health information technology systems: trust but verify.
    Denham CR; Classen DC; Swenson SJ; Henderson MJ; Zeltner T; Bates DW
    J Patient Saf; 2013 Dec; 9(4):177-89. PubMed ID: 24257062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring completeness in clinical data research networks with DQe-c.
    Estiri H; Stephens KA; Klann JG; Murphy SN
    J Am Med Inform Assoc; 2018 Jan; 25(1):17-24. PubMed ID: 29069394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semi-supervised ROC analysis for reliable and streamlined evaluation of phenotyping algorithms.
    Gao J; Bonzel CL; Hong C; Varghese P; Zakir K; Gronsbell J
    J Am Med Inform Assoc; 2024 Feb; 31(3):640-650. PubMed ID: 38128118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set.
    Rasmy L; Wu Y; Wang N; Geng X; Zheng WJ; Wang F; Wu H; Xu H; Zhi D
    J Biomed Inform; 2018 Aug; 84():11-16. PubMed ID: 29908902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical Data Extraction and Normalization of Cyrillic Electronic Health Records Via Deep-Learning Natural Language Processing.
    Zhao B
    JCO Clin Cancer Inform; 2019 Sep; 3():1-9. PubMed ID: 31577448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust and efficient semi-supervised estimation of average treatment effects with application to electronic health records data.
    Cheng D; Ananthakrishnan AN; Cai T
    Biometrics; 2021 Jun; 77(2):413-423. PubMed ID: 32413171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction.
    Shi Z; Wang N; Kong F; Cao H; Cao Q
    Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.