These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30659081)

  • 1. Encoding phase spectrum for evaluating 'electric qualia'.
    Caputi AA; Aguilera PA
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30659081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish
    Rodríguez-Cattaneo A; Aguilera PA; Caputi AA
    J Exp Biol; 2017 May; 220(Pt 9):1663-1673. PubMed ID: 28202586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs.
    Cilleruelo ER; Caputi AA
    Brain Res; 2012 Jan; 1434():102-14. PubMed ID: 21835395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish geometry and electric organ discharge determine functional organization of the electrosensory epithelium.
    Sanguinetti-Scheck JI; Pedraja EF; Cilleruelo E; Migliaro A; Aguilera P; Caputi AA; Budelli R
    PLoS One; 2011; 6(11):e27470. PubMed ID: 22096578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocommunication in pulse Gymnotiformes: the role of electric organ discharge (EOD) time course in species identification.
    Waddell JC; Caputi AA
    J Exp Biol; 2020 Aug; 223(Pt 16):. PubMed ID: 32748795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroreception in G carapo: detection of changes in waveform of the electrosensory signals.
    Aguilera PA; Caputi AA
    J Exp Biol; 2003 Mar; 206(Pt 6):989-98. PubMed ID: 12582141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric imaging through evolution, a modeling study of commonalities and differences.
    Pedraja F; Aguilera P; Caputi AA; Budelli R
    PLoS Comput Biol; 2014 Jul; 10(7):e1003722. PubMed ID: 25010765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory processing in the fast electrosensory pathway of pulse gymnotids studied at multiple integrative levels.
    Castelló ME; Nogueira J; Trujillo-Cenóz O; Caputi AA
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Nov; 151(3):370-380. PubMed ID: 17513149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active electroreception in Gymnotus omari: imaging, object discrimination, and early processing of actively generated signals.
    Caputi AA; Castelló ME; Aguilera PA; Pereira C; Nogueira J; Rodríguez-Cattaneo A; Lezcano C
    J Physiol Paris; 2008; 102(4-6):256-71. PubMed ID: 18992336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active electrolocation in pulse gymnotids: sensory consequences of objects' mutual polarization.
    Aguilera PA; Pereira AC; Caputi AA
    J Exp Biol; 2012 May; 215(Pt 9):1533-41. PubMed ID: 22496290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic.
    Caputi AA; Castelló ME; Aguilera P; Trujillo-Cenóz O
    J Physiol Paris; 2002; 96(5-6):493-505. PubMed ID: 14692497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroreception in Gymnotus carapo: pre-receptor processing and the distribution of electroreceptor types.
    Castelló ME; Aguilera PA; Trujillo-Cenóz O; Caputi AA
    J Exp Biol; 2000 Nov; 203(Pt 21):3279-87. PubMed ID: 11023848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
    Savard M; Krahe R; Chacron MJ
    Neuroscience; 2011 Jan; 172():270-84. PubMed ID: 21035523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies of object polarization and their role in electrosensory information gathering.
    Caputi AA; Aguilera PA
    Bioinspir Biomim; 2020 Apr; 15(3):035008. PubMed ID: 31899911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory Specializations of Mormyrid Fish Are Associated with Species Differences in Electric Signal Localization Behavior.
    Vélez A; Ryoo DY; Carlson BA
    Brain Behav Evol; 2018; 92(3-4):125-141. PubMed ID: 30820010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum.
    Pedraja F; Perrone R; Silva A; Budelli R
    Bioinspir Biomim; 2016 Oct; 11(6):065002. PubMed ID: 27767014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probability and amplitude of novelty responses as a function of the change in contrast of the reafferent image in G carapo.
    Caputi AA; Aguilera PA; Castelló ME
    J Exp Biol; 2003 Mar; 206(Pt 6):999-1010. PubMed ID: 12582142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.