These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 30659147)
1. Reaction of O Bradley JM; Svistunenko DA; Pullin J; Hill N; Stuart RK; Palenik B; Wilson MT; Hemmings AM; Moore GR; Le Brun NE Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2058-2067. PubMed ID: 30659147 [TBL] [Abstract][Full Text] [Related]
2. The ferroxidase reaction of ferritin reveals a diferric mu-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins. Moënne-Loccoz P; Krebs C; Herlihy K; Edmondson DE; Theil EC; Huynh BH; Loehr TM Biochemistry; 1999 Apr; 38(17):5290-5. PubMed ID: 10220314 [TBL] [Abstract][Full Text] [Related]
3. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn. Bradley JM; Pullin J; Moore GR; Svistunenko DA; Hemmings AM; Le Brun NE Dalton Trans; 2020 Feb; 49(5):1545-1554. PubMed ID: 31930254 [TBL] [Abstract][Full Text] [Related]
4. Computational study of iron(II) and -(III) complexes with a simple model human H ferritin ferroxidase center. Bacelo DE; Binning RC Inorg Chem; 2006 Dec; 45(25):10263-9. PubMed ID: 17140234 [TBL] [Abstract][Full Text] [Related]
5. Functionality of the three-site ferroxidase center of Escherichia coli bacterial ferritin (EcFtnA). Bou-Abdallah F; Yang H; Awomolo A; Cooper B; Woodhall MR; Andrews SC; Chasteen ND Biochemistry; 2014 Jan; 53(3):483-95. PubMed ID: 24380371 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation. Ebrahimi KH; Bill E; Hagedoorn PL; Hagen WR Mol Biosyst; 2016 Nov; 12(12):3576-3588. PubMed ID: 27722502 [TBL] [Abstract][Full Text] [Related]
7. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Pereira AS; Small W; Krebs C; Tavares P; Edmondson DE; Theil EC; Huynh BH Biochemistry; 1998 Jul; 37(28):9871-6. PubMed ID: 9665690 [TBL] [Abstract][Full Text] [Related]
8. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement. Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR Nat Chem Biol; 2012 Nov; 8(11):941-8. PubMed ID: 23001032 [TBL] [Abstract][Full Text] [Related]
9. Structural Insights into the Reaction between Hydrogen Peroxide and Di-iron Complexes at the Ferroxidase Center of Ferritin. Jiao R; Zhao G; Zhang T Inorg Chem; 2024 Feb; 63(7):3359-3365. PubMed ID: 38315811 [TBL] [Abstract][Full Text] [Related]
10. Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin. Bradley JM; Svistunenko DA; Lawson TL; Hemmings AM; Moore GR; Le Brun NE Angew Chem Int Ed Engl; 2015 Dec; 54(49):14763-7. PubMed ID: 26474305 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for iron mineralization by bacterioferritin. Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic evidence for the presence of a high-valent Fe(IV) species in the ferroxidase reaction of an archaeal ferritin. Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR FEBS Lett; 2017 Jun; 591(12):1712-1719. PubMed ID: 28542723 [TBL] [Abstract][Full Text] [Related]
13. mu-1,2-peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer. Zhao G; Su M; Chasteen ND J Mol Biol; 2005 Sep; 352(2):467-77. PubMed ID: 16095616 [TBL] [Abstract][Full Text] [Related]
14. The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway. Tosha T; Hasan MR; Theil EC Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18182-7. PubMed ID: 19011101 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic evidence for and characterization of a trinuclear ferroxidase center in bacterial ferritin from Desulfovibrio vulgaris Hildenborough. Pereira AS; Timóteo CG; Guilherme M; Folgosa F; Naik SG; Duarte AG; Huynh BH; Tavares P J Am Chem Soc; 2012 Jul; 134(26):10822-32. PubMed ID: 22681596 [TBL] [Abstract][Full Text] [Related]
16. Key carboxylate residues for iron transit through the prokaryotic ferritin Bradley JM; Fair J; Hemmings AM; Le Brun NE Microbiology (Reading); 2021 Nov; 167(11):. PubMed ID: 34825885 [TBL] [Abstract][Full Text] [Related]
17. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures. Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070 [TBL] [Abstract][Full Text] [Related]
18. Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W. Bou-Abdallah F; Zhao G; Biasiotto G; Poli M; Arosio P; Chasteen ND J Am Chem Soc; 2008 Dec; 130(52):17801-11. PubMed ID: 19055359 [TBL] [Abstract][Full Text] [Related]
19. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Davydov R; Valentine AM; Komar-Panicucci S; Hoffman BM; Lippard SJ Biochemistry; 1999 Mar; 38(13):4188-97. PubMed ID: 10194335 [TBL] [Abstract][Full Text] [Related]