These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30659205)

  • 21. In-situ microwave-assisted catalytic upgrading of heavy oil: Experimental validation and effect of catalyst pore structure on activity.
    Adam M; Anbari H; Hart A; Wood J; Robinson JP; Rigby SP
    Chem Eng J; 2021 Jun; 413():127420. PubMed ID: 33106747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-Dependent Microwave Heating and Catalytic Activity of Fine Iron Particles in the Deep Dehydrogenation of Hexadecane.
    Jie X; Chen R; Biddle T; Slocombe DR; Dilworth JR; Xiao T; Edwards PP
    Chem Mater; 2022 May; 34(10):4682-4693. PubMed ID: 35645460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the existence of and mechanism for microwave-specific reaction rate enhancement.
    Dudley GB; Richert R; Stiegman AE
    Chem Sci; 2015 Apr; 6(4):2144-2152. PubMed ID: 29308138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental Investigation on the Mass Diffusion Behaviors of Calcium Oxide and Carbon in the Solid-State Synthesis of Calcium Carbide by Microwave Heating.
    Li M; Chen S; Dai H; Zhao H; Jiang B
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33924926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microwave-enhanced CO2 gasification of oil palm shell char.
    Lahijani P; Zainal ZA; Mohamed AR; Mohammadi M
    Bioresour Technol; 2014 Apr; 158():193-200. PubMed ID: 24607454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethanol to Acetaldehyde Conversion under Thermal and Microwave Heating of ZnO-CuO-SiO
    Kustov AL; Tarasov AL; Tkachenko OP; Mishin IV; Kapustin GI; Kustov LM
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.
    Ano T; Kishimoto F; Sasaki R; Tsubaki S; Maitani MM; Suzuki E; Wada Y
    Phys Chem Chem Phys; 2016 May; 18(19):13173-9. PubMed ID: 27136754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic Activity of Various Carbons during the Microwave-Initiated Deep Dehydrogenation of Hexadecane.
    Jie X; Wang J; Gonzalez-Cortes S; Yao B; Li W; Gao Y; Dilworth JR; Xiao T; Edwards PP
    JACS Au; 2021 Nov; 1(11):2021-2032. PubMed ID: 34841415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolysis of heavy hydrocarbons under microwave heating of catalysts and adsorbents.
    Bolotov VA; Udalov EI; Parmon VN; Tanashev YY; Chernousov YD
    J Microw Power Electromagn Energy; 2012; 46(1):39-46. PubMed ID: 24427866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave sintering process model.
    Peng H; Tinga WR; Sundararaj U; Eadie RL
    J Microw Power Electromagn Energy; 2003; 38(4):243-58. PubMed ID: 15323110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of anodic current attributed to oxygen evolution on α-Fe
    Kishimoto F; Matsuhisa M; Kawamura S; Fujii S; Tsubaki S; Maitani MM; Suzuki E; Wada Y
    Sci Rep; 2016 Oct; 6():35554. PubMed ID: 27739529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the temperature of supported platinum nanoparticles under microwave irradiation by in situ and operando XAFS.
    Ano T; Tsubaki S; Liu A; Matsuhisa M; Fujii S; Motokura K; Chun WJ; Wada Y
    Commun Chem; 2020 Jul; 3(1):86. PubMed ID: 36703448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].
    Wang XH; Bo LL; Liu HN; Zhang H; Sun JY; Yang L; Cai LD
    Huan Jing Ke Xue; 2013 Jun; 34(6):2107-15. PubMed ID: 23947020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microwave Heating Outperforms Conventional Heating for a Thermal Reaction that Produces a Thermally Labile Product: Observations Consistent with Selective Microwave Heating.
    Duangkamol C; Batsomboon P; Stiegman AE; Dudley GB
    Chem Asian J; 2019 Aug; 14(15):2594-2597. PubMed ID: 31157510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Preparation of Si
    Luo T; Xu L; Peng J; Zhang L; Xia Y; Ju S; Liu J; Gang R; Wang Z
    ACS Omega; 2020 Mar; 5(11):5834-5843. PubMed ID: 32226863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Chromium Carbide Nanopowders by Microwave Heating and Their Composition and Microstructure Change under Gamma Ray Irradiation.
    Jin K; Jia Y; Zhao Z; Song W; Wang S; Guan C
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30577552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.
    Schou-Pedersen AM; Østergaard J; Cornett C; Hansen SH
    Int J Pharm; 2015 May; 485(1-2):97-107. PubMed ID: 25746946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Microwave-Assisted Boudouard Reaction: A Highly Effective Reduction of the Greenhouse Gas CO
    Dai H; Zhao H; Chen S; Jiang B
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microwave flash pyrolysis.
    Cho HY; Ajaz A; Himali D; Waske PA; Johnson RP
    J Org Chem; 2009 Jun; 74(11):4137-42. PubMed ID: 19432412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.