These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30659219)
21. Targeted evolution of pinning landscapes for large superconducting critical currents. Sadovskyy IA; Koshelev AE; Kwok WK; Welp U; Glatz A Proc Natl Acad Sci U S A; 2019 May; 116(21):10291-10296. PubMed ID: 30962373 [TBL] [Abstract][Full Text] [Related]
22. Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field. Oripov B; Anlage SM Phys Rev E; 2020 Mar; 101(3-1):033306. PubMed ID: 32289922 [TBL] [Abstract][Full Text] [Related]
23. Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg-Landau equations. Jafri HM; Ma X; Zhao C; Liang D; Huang H; Liu Z; Chen LQ J Phys Condens Matter; 2017 Dec; 29(50):505701. PubMed ID: 28925380 [TBL] [Abstract][Full Text] [Related]
24. Parallel magnetic field suppresses dissipation in superconducting nanostrips. Wang YL; Glatz A; Kimmel GJ; Aranson IS; Thoutam LR; Xiao ZL; Berdiyorov GR; Peeters FM; Crabtree GW; Kwok WK Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10274-E10280. PubMed ID: 29133405 [TBL] [Abstract][Full Text] [Related]
25. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films. Grimaldi G; Leo A; Cirillo C; Attanasio C; Nigro A; Pace S J Phys Condens Matter; 2009 Jun; 21(25):254207. PubMed ID: 21828431 [TBL] [Abstract][Full Text] [Related]
26. Enhancement of superconducting critical current density by Fe impurity substitution in NbSe Pervin R; Krishnan M; Rana AK; Kannan M; Arumugam S; Shirage PM Phys Chem Chem Phys; 2017 May; 19(18):11230-11238. PubMed ID: 28405663 [TBL] [Abstract][Full Text] [Related]
27. Tunable Noninteger Flux Quantum of Vortices in Superconducting Strips. Zhang AL; Gladilin V; Van de Vondel J; Moshchalkov VV; Ge JY Nano Lett; 2022 Sep; 22(17):7151-7157. PubMed ID: 35980177 [TBL] [Abstract][Full Text] [Related]
28. Velocimetry of superconducting vortices based on stroboscopic resonances. Jelić ŽL; Milošević MV; Silhanek AV Sci Rep; 2016 Oct; 6():35687. PubMed ID: 27774995 [TBL] [Abstract][Full Text] [Related]
29. Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields. Serrano IG; Sesé J; Guillamón I; Suderow H; Vieira S; Ibarra MR; De Teresa JM Beilstein J Nanotechnol; 2016; 7():1698-1708. PubMed ID: 28144519 [TBL] [Abstract][Full Text] [Related]
31. Current distribution across type II superconducting films: a new vortex-free critical state. Talantsev EF; Pantoja AE; Crump WP; Tallon JL Sci Rep; 2018 Jan; 8(1):1716. PubMed ID: 29379094 [TBL] [Abstract][Full Text] [Related]
32. A Superconducting Micro-Magnetometer for Quantum Vortex in Superconducting Nanoflakes. Bi X; Tian F; Chen G; Li Z; Qin F; Lv YY; Huang J; Qiu C; Ao L; Chen Y; Gu G; Chen Y; Yuan H Adv Mater; 2023 May; 35(19):e2211409. PubMed ID: 36808146 [TBL] [Abstract][Full Text] [Related]
33. Symmetric and asymmetric vortex-antivortex molecules in a fourfold superconducting geometry. Geurts R; Milosević MV; Peeters FM Phys Rev Lett; 2006 Sep; 97(13):137002. PubMed ID: 17026064 [TBL] [Abstract][Full Text] [Related]
34. Angular dependence of vortex instability in a layered superconductor: the case study of Fe(Se,Te) material. Grimaldi G; Leo A; Nigro A; Pace S; Braccini V; Bellingeri E; Ferdeghini C Sci Rep; 2018 Mar; 8(1):4150. PubMed ID: 29515198 [TBL] [Abstract][Full Text] [Related]
35. Magnetic field-induced dissipation-free state in superconducting nanostructures. Córdoba R; Baturina TI; Sesé J; Mironov AY; De Teresa JM; Ibarra MR; Nasimov DA; Gutakovskii AK; Latyshev AV; Guillamón I; Suderow H; Vieira S; Baklanov MR; Palacios JJ; Vinokur VM Nat Commun; 2013; 4():1437. PubMed ID: 23385582 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of superconducting properties and flux pinning mechanism on Cr Arumugam S; Krishnan M; Ishigaki K; Gouchi J; Pervin R; Selvan GK; Shirage PM; Uwatoko Y Sci Rep; 2019 Jan; 9(1):347. PubMed ID: 30674929 [TBL] [Abstract][Full Text] [Related]
37. Dynamical regimes of kinematic vortices in the resistive state of a mesoscopic superconducting bridge. Presotto A; Sardella E; Malvezzi AL; Zadorosny R J Phys Condens Matter; 2020 Aug; 32(43):. PubMed ID: 32663806 [TBL] [Abstract][Full Text] [Related]
38. Enhancement of critical current density in a superconducting NbSe He X; Wen Y; Zhang C; Lai Z; Chudnovsky EM; Zhang X Nanoscale; 2020 Jun; 12(22):12076-12082. PubMed ID: 32478360 [TBL] [Abstract][Full Text] [Related]
39. High-frequency crossover from vortex-mass enhancement to pinning. Lipavský P; Lin PJ J Phys Condens Matter; 2023 Jul; 35(40):. PubMed ID: 37364588 [TBL] [Abstract][Full Text] [Related]
40. Use of thermal gradients for control of vortex matter in mesoscopic superconductors. Duarte ECS; Presotto A; Okimoto D; Souto VS; Sardella E; Zadorosny R J Phys Condens Matter; 2019 Oct; 31(40):405901. PubMed ID: 31247610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]