BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30659400)

  • 1. Universal nanohydrophobicity predictions using virtual nanoparticle library.
    Wang W; Yan X; Zhao L; Russo DP; Wang S; Liu Y; Sedykh A; Zhao X; Yan B; Zhu H
    J Cheminform; 2019 Jan; 11(1):6. PubMed ID: 30659400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches.
    Yan X; Sedykh A; Wang W; Zhao X; Yan B; Zhu H
    Nanoscale; 2019 Apr; 11(17):8352-8362. PubMed ID: 30984943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Nano-Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling.
    Wang W; Sedykh A; Sun H; Zhao L; Russo DP; Zhou H; Yan B; Zhu H
    ACS Nano; 2017 Dec; 11(12):12641-12649. PubMed ID: 29149552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Nanoparticle Prototypes and Archetypes.
    Fernandez M; Barnard AS
    ACS Nano; 2015 Dec; 9(12):11980-92. PubMed ID: 26575441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemoinformatics approach for the characterization of hybrid nanomaterials: safer and efficient design perspective.
    Mikolajczyk A; Sizochenko N; Mulkiewicz E; Malankowska A; Rasulev B; Puzyn T
    Nanoscale; 2019 Jun; 11(24):11808-11818. PubMed ID: 31184677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints.
    Afantitis A; Melagraki G; Tsoumanis A; Valsami-Jones E; Lynch I
    Nanotoxicology; 2018 Dec; 12(10):1148-1165. PubMed ID: 30182778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.
    Walkey CD; Olsen JB; Guo H; Emili A; Chan WC
    J Am Chem Soc; 2012 Feb; 134(4):2139-47. PubMed ID: 22191645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.
    Sayes C; Ivanov I
    Risk Anal; 2010 Nov; 30(11):1723-34. PubMed ID: 20561263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles.
    Colangelo E; Chen Q; Davidson AM; Paramelle D; Sullivan MB; Volk M; Lévy R
    Langmuir; 2017 Jan; 33(1):438-449. PubMed ID: 27982599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces.
    Boulos SP; Davis TA; Yang JA; Lohse SE; Alkilany AM; Holland LA; Murphy CJ
    Langmuir; 2013 Dec; 29(48):14984-96. PubMed ID: 24215427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses.
    Kang S; Ahn S; Lee J; Kim JY; Choi M; Gujrati V; Kim H; Kim J; Shin EC; Jon S
    J Control Release; 2017 Jun; 256():56-67. PubMed ID: 28428066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact.
    Buchman JT; Hudson-Smith NV; Landy KM; Haynes CL
    Acc Chem Res; 2019 Jun; 52(6):1632-1642. PubMed ID: 31181913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically synthesized green gold nanoparticles from
    Wu F; Zhu J; Li G; Wang J; Veeraraghavan VP; Krishna Mohan S; Zhang Q
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3297-3305. PubMed ID: 31379212
    [No Abstract]   [Full Text] [Related]  

  • 14. Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface.
    Tsutsumi H; Shirai T; Ohkusa H; Mihara H
    Protein Pept Lett; 2018; 25(1):84-89. PubMed ID: 29256341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of chitosan based gold nanomaterial as an efficient antifilarial agent: A mechanistic approach.
    Saha SK; Roy P; Mondal MK; Roy D; Gayen P; Chowdhury P; Babu SPS
    Carbohydr Polym; 2017 Feb; 157():1666-1676. PubMed ID: 27987881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a multisource model for gold nanoparticle-mediated plasmonic heating with near-infrared laser by the finite element method.
    Reynoso FJ; Lee CD; Cheong SK; Cho SH
    Med Phys; 2013 Jul; 40(7):073301. PubMed ID: 23822455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.
    Liu R; Zhao T; Zhao X; Reynoso FJ
    Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics.
    Lin W; Yao N; Qian L; Zhang X; Chen Q; Wang J; Zhang L
    Acta Biomater; 2017 Aug; 58():455-465. PubMed ID: 28583900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles in theranostic oncology: current state-of-the-art.
    Akhter S; Ahmad MZ; Ahmad FJ; Storm G; Kok RJ
    Expert Opin Drug Deliv; 2012 Oct; 9(10):1225-43. PubMed ID: 22897613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and rapid method for synthesis of porous gold nanoparticles and its application in improving DNA loading capacity.
    Hakimian F; Ghourchian H
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109795. PubMed ID: 31349459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.