BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30659400)

  • 21. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.
    Divya KP; Miroshnikov M; Dutta D; Vemula PK; Ajayan PM; John G
    Acc Chem Res; 2016 Sep; 49(9):1671-80. PubMed ID: 27552443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation.
    Deville S; Baré B; Piella J; Tirez K; Hoet P; Monopoli MP; Dawson KA; Puntes VF; Nelissen I
    Nanotoxicology; 2016 Dec; 10(10):1395-1403. PubMed ID: 27550382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced charge transfer by gold nanoparticle at DNA modified electrode and its application to label-free DNA detection.
    Yang Y; Li C; Yin L; Liu M; Wang Z; Shu Y; Li G
    ACS Appl Mater Interfaces; 2014 May; 6(10):7579-84. PubMed ID: 24734899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study.
    Ferrero V; Visonà G; Dalmasso F; Gobbato A; Cerello P; Strigari L; Visentin S; Attili A
    Med Phys; 2017 May; 44(5):1983-1992. PubMed ID: 28236655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of amino acids interaction with gold nanoparticle.
    Ramezani F; Amanlou M; Rafii-Tabar H
    Amino Acids; 2014 Apr; 46(4):911-20. PubMed ID: 24378870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-pot synthesis and characterization of ovalbumin-conjugated gold nanoparticles: A comparative study of adjuvanticity against the physical mixture of ovalbumin and gold nanoparticles.
    Yang Y; Zhang Y; Thakur A; Li R; Xu H; Wang Z; Ghavami M; Tu Z; Liu H
    Int J Pharm; 2019 Nov; 571():118704. PubMed ID: 31536763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells.
    Del Pino P; Yang F; Pelaz B; Zhang Q; Kantner K; Hartmann R; Martinez de Baroja N; Gallego M; Möller M; Manshian BB; Soenen SJ; Riedel R; Hampp N; Parak WJ
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5483-7. PubMed ID: 27028669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. α-Helical Peptide-Gold Nanoparticle Hybrids: Synthesis, Characterization, and Catalytic Activity.
    Tomizaki KY; Yamaguchi Y; Tsukamoto N; Imai T
    Protein Pept Lett; 2018; 25(1):56-63. PubMed ID: 29237364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold Nanoparticles: Understanding and Designing the Gold-Bio Interface: Insights from Simulations (Small 18/2016).
    Charchar P; Christofferson AJ; Todorova N; Yarovsky I
    Small; 2016 May; 12(18):2394. PubMed ID: 27151827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles.
    Fourches D; Pu D; Tropsha A
    Comb Chem High Throughput Screen; 2011 Mar; 14(3):217-25. PubMed ID: 21275889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supervised Learning and Mass Spectrometry Predicts the
    Lazarovits J; Sindhwani S; Tavares AJ; Zhang Y; Song F; Audet J; Krieger JR; Syed AM; Stordy B; Chan WCW
    ACS Nano; 2019 Jul; 13(7):8023-8034. PubMed ID: 31268684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes.
    Ivanov MR; Haes AJ
    Analyst; 2011 Jan; 136(1):54-63. PubMed ID: 20967383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances of Gold Nanoparticles in Biomedical Applications: State of the Art.
    Aminabad NS; Farshbaf M; Akbarzadeh A
    Cell Biochem Biophys; 2019 Jun; 77(2):123-137. PubMed ID: 30570696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping nanostructure: a systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions.
    Sayle DC; Seal S; Wang Z; Mangili BC; Price DW; Karakoti AS; Kuchibhatla SV; Hao Q; Möbus G; Xu X; Sayle TX
    ACS Nano; 2008 Jun; 2(6):1237-51. PubMed ID: 19206342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Nano-Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions.
    Wang Y; Cai R; Chen C
    Acc Chem Res; 2019 Jun; 52(6):1507-1518. PubMed ID: 31149804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of
    Ranjitha VR; Rai VR
    3 Biotech; 2017 Oct; 7(5):299. PubMed ID: 28884066
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Data Analytics Approach for Rational Design of Nanomedicines with Programmable Drug Release.
    Mullis AS; Broderick SR; Binnebose AM; Peroutka-Bigus N; Bellaire BH; Rajan K; Narasimhan B
    Mol Pharm; 2019 May; 16(5):1917-1928. PubMed ID: 30973741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy.
    Bao QY; Geng DD; Xue JW; Zhou G; Gu SY; Ding Y; Zhang C
    Int J Pharm; 2013 Mar; 446(1-2):112-8. PubMed ID: 23416166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.