BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30659542)

  • 1. Exploration of Novel 5α-Reductase Inhibitors for Benign Prostatic Hyperplasia by 2D/3D QSAR, Cytotoxicity Pre-ADME and Docking Studies.
    Dhingra R; Malhotra M; Sharma V; Bhardwaj TR; Dhingra N
    Curr Top Med Chem; 2018; 18(32):2816-2834. PubMed ID: 30659542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale, mechanism-driven, dynamic model for the effects of 5α-reductase inhibition on prostate maintenance.
    Zager MG; Barton HA
    PLoS One; 2012; 7(9):e44359. PubMed ID: 22970204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New steroidal 17β-carboxy derivatives present anti-5α-reductase activity and anti-proliferative effects in a human androgen-responsive prostate cancer cell line.
    Amaral C; Varela C; Correia-da-Silva G; Tavares da Silva E; Carvalho RA; Costa SC; Cunha SC; Fernandes JO; Teixeira N; Roleira FM
    Biochimie; 2013 Nov; 95(11):2097-106. PubMed ID: 23933094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia.
    Bartsch G; Rittmaster RS; Klocker H
    Eur Urol; 2000 Apr; 37(4):367-80. PubMed ID: 10765065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of Novel Inhibitors for Bruton's Tyrosine Kinase by 3D QSAR Modeling and Molecular Dynamics Simulation.
    Bavi R; Kumar R; Choi L; Woo Lee K
    PLoS One; 2016; 11(1):e0147190. PubMed ID: 26784025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serenoa repens extracts: In vitro study of the 5α-reductase activity in a co-culture model for Benign Prostatic Hyperplasia.
    Buonocore D; Verri M; Cattaneo L; Arnica S; Ghitti M; Dossena M
    Arch Ital Urol Androl; 2018 Sep; 90(3):199-202. PubMed ID: 30362688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual screening approach for the discovery of selective 5α-reductase type II inhibitors for benign prostatic hyperplasia treatment.
    Mandour AA; Elkaeed EB; Hagras M; Refaat HM; Ismail NS
    Future Med Chem; 2023 Dec; 15(23):2149-2163. PubMed ID: 37955117
    [No Abstract]   [Full Text] [Related]  

  • 8. Cynanchum wilfordii Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia by Regulating 5α-Reductase and Androgen Receptor Activities in a Rat Model.
    Lee G; Shin J; Choi H; Jo A; Pan S; Bae D; Lee Y; Choi C
    Nutrients; 2017 Sep; 9(10):. PubMed ID: 28953224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity landscape analysis of novel 5α-reductase inhibitors.
    Naveja JJ; Cortés-Benítez F; Bratoeff E; Medina-Franco JL
    Mol Divers; 2016 Aug; 20(3):771-80. PubMed ID: 26829939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of 5α-reductase inhibitors in benign prostatic diseases.
    Azzouni F; Mohler J
    Prostate Cancer Prostatic Dis; 2012 Sep; 15(3):222-30. PubMed ID: 22333687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostate diseases--role of sex steroids and their inhibitors.
    Welén K; Damber JE
    Best Pract Res Clin Endocrinol Metab; 2011 Apr; 25(2):355-67. PubMed ID: 21397203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The therapeutic effects of Stauntonia hexaphylla in benign prostate hyperplasia are mediated by the regulation of androgen receptors and 5α-reductase type 2.
    Hong GL; Park SR; Jung DY; Karunasagara S; Lee KP; Koh EJ; Cho K; Park SS; Jung JY
    J Ethnopharmacol; 2020 Mar; 250():112446. PubMed ID: 31812646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and biological evaluation of novel androst-17β-amide structurally related compounds as dual 5α-reductase inhibitors and androgen receptor antagonists.
    Lao K; Xun G; Gou X; Xiang H
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):1597-1606. PubMed ID: 31469015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on steroidal 5α-reductase inhibitors for treatment of benign prostatic hyperplasia.
    Sun J; Xiang H; Yang LL; Chen JB
    Curr Med Chem; 2011; 18(23):3576-89. PubMed ID: 21756226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Combined Approach of Pharmacophore Modeling, QSAR Study, Molecular Docking and In silico ADME/Tox Prediction of 4-Arylthio & 4-Aryloxy-3- Iodopyridine-2(1H)-one Analogs to Identify Potential Reverse Transcriptase Inhibitor: Anti-HIV Agents.
    Panigrahi D; Mishra A; Sahu SK; Azam MA; Vyshaag CM
    Med Chem; 2022; 18(1):51-87. PubMed ID: 33319692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D QSAR, Docking, Molecular Dynamics Simulations and MM-GBSA studies of Extended Side Chain of the Antitubercular Drug (6S) 2-Nitro-6- {[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3] oxazine.
    Chaudhari HK; Pahelkar A
    Infect Disord Drug Targets; 2019; 19(2):145-166. PubMed ID: 30324898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of steroid 4 and derivatives 4a-4f as inhibitors of the enzyme 5α-reductase 1.
    Arellano Y; Bratoeff E; Heuze Y; Bravo M; Soriano J; Cabeza M
    Bioorg Med Chem; 2018 Aug; 26(14):4058-4064. PubMed ID: 30007568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5alpha-reductase inhibitor.
    Clark RV; Hermann DJ; Cunningham GR; Wilson TH; Morrill BB; Hobbs S
    J Clin Endocrinol Metab; 2004 May; 89(5):2179-84. PubMed ID: 15126539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview on 5alpha-reductase inhibitors.
    Aggarwal S; Thareja S; Verma A; Bhardwaj TR; Kumar M
    Steroids; 2010 Feb; 75(2):109-53. PubMed ID: 19879888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of comparative pharmacophoric model for steroidal 5α-reductase I and II inhibitors: A 3D-QSAR study on 6-azasteroids.
    Thareja S; Rajpoot T; Verma SK
    Steroids; 2015 Mar; 95():96-103. PubMed ID: 25582615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.